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基于Kramers逃逸速率的Duffing振子广义调参
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以二维Duffing振子的随机共振为研究对象, 提出Duffing振子的广义调参随机共振. 以Kramers逃逸速
率为基础, 建立了Duffing振子随机共振的判别函数, 阐述了Duffing振子在不同噪声强度及信号频率输入条
件下的广义调参随机共振规律, 并给出了Duffing振子广义调参随机共振的一般方法.
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1 引 言

1981年, Benzi等 [1−3]在研究古气候冰川问题

时首次提出 “随机共振”的概念, 用以解释过去 70
万年地球的冰川期和暖气候期交替出现的现象. 随
后, 随机共振现象在实验中得到验证 [4,5], 这一有趣
的非线性现象开始得到越来越广泛的关注 [6].

随机共振是指原本微弱的信号在噪声和非线

性系统的帮助下能量得到增强. 此时, 噪声所起的
已经不是人们印象中的消极作用, 而是积极作用,
随机共振发生时, 一部分噪声能量转移到信号身
上, 使原本微弱的信号大大增强. 由于信号的输出,
信噪比随噪声的增大呈现先增后减的趋势, 并在某
一噪声强度值时出现峰值, 产生类似力学中人们熟
知的共振输出现象, 故称为随机共振. 正是由于随
机共振能够提高含噪微弱信号的输出信噪比, 人们
将随机共振引入微弱信号检测领域, 并取得了丰富
的研究成果 [7−9].

二维Duffing振子是一类能够产生随机共振的
非线性系统. Duffing振子的随机共振研究始于
1989 年 [10,11], 随后, 文献 [12, 13]对Duffing振子随

机共振的输出特性进行了理论推导和仿真, 文献
[14]通过电路实验验证了Duffing振子的随机共振,
文献 [15, 16]则建立了二维Duffing 振子的微弱信
号检测模型, 实现基于二维Duffing振子的微弱信
号检测.

随机共振实际上是信号、噪声和非线性系统三

者之间的最优匹配关系.然而实际工程应用中, 信
号和噪声情况往往未知, 它们与系统三者之间也
并不总是最优匹配关系, 此时若想通过随机共振实
现微弱信号检测, 就需要改变信号、噪声或非线性
系统三者中的某一个、两个或全部特性, 由于待测
信号给定, 最好的方法就是调节系统的参数, 使信
号、噪声和非线性系统重新实现最优匹配. 在此前
的调参共振研究中, 成果大多集中于系统参数的调
节 [17] 和信号尺度的调节 [18]及二者的关联性 [19],
主要涵盖传统的一维双稳随机共振模型. 而二维
Duffing振子模型中还包含可调的阻尼比参数, 但
已有的调参共振研究成果较少. 此前的研究中, 文
献 [20, 21] 研究了阻尼比参数的变化对Duffing振
子随机共振的影响, 文献 [15]则提出Duffing振子
的变尺度随机共振, 实现大频率信号的随机共振,
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这些研究为Duffing振子的调参随机共振奠定了一
定基础.

Duffing振子的调参随机共振研究, 目前还存
在诸如参数的调节机理不清楚、参数之间关联性不

明晰等问题.本文在前期研究基础上, 建立了Duff-
ing振子的广义调参随机共振模型, 以Kramers逃
逸速率为分析手段, 深入研究了各相关参数的变化
对系统随机共振的影响, 探究Duffing振子的广义
调参随机共振机理和规律, 揭示Duffing振子广义
调参随机共振的一般方法.

2 Duffing振子随机共振机理

二维Duffing振子的随机共振模型可以写成如
下形式:

ẍ+ kẋ− ax+ bx3

=A cos(2πf0t) +
√
2Dξ(t), (1)

其中, k是阻尼比; −ax + bx3是势场作用力, 对应
势函数U(x) = −ax2/2 + bx4/4, a > 0, b > 0称为

系统参数; s(t) = A cos(2πf0t)表示幅值为A, 频率
为 f0, 初相位为 0 的周期驱动力; n(t) =

√
2Dξ(t)

表示强度为D的噪声信号,其中 ξ(t)是均值为0,方
差为1的高斯白噪声. 这样, 方程 (1)可以理解为布
朗粒子在诸如液体等介质的势场U(x)中的运动,
如图 1所示. 粒子同时受到阻尼力−kẋ, 势场作用
力−dU(x)/dx, 周期驱动力 s(t)和随机噪声n(t)

的共同作用, 系统输出x即是布朗粒子的位移函

数x(t).
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图 1 Duffing系统的双稳势函数 (实线)及周期力调制的
势函数 (虚线)

从图 1可以看出,当输入信号不存在,即 s(t) =

n(t) = 0时, 系统势函数为一典型的双稳势场结
构, 系统存在两个稳定平衡点 (xm1,m2 = ±

√
a/b)

和一个不稳定平衡点 (xb = 0), 中间势垒高度

∆U = a2/(4b). 而当周期信号 s(t)存在时, 系统
势函数受到特征信号周期性的调制, 由U(x)变为

V (x):

V (x) = U(x)− xA cos(2πf0t)

= −a

2
x2 +

b

4
x4 − xA cos(2πf0t), (2)

这样, 系统势函数就被周期性地抬高或加深,
如图 1 . 此时, 系统存在一临界幅值AC =√
4a3/(27b)

[19], 当周期信号幅值A < AC时, 布
朗粒子只能在单阱中做小幅振荡;而当周期信号幅
值A > AC时, 布朗粒子能够越过势垒进行大范围
的跃迁运动.

有意思的是, 当噪声n(t)存在且系统各参数

合适的条件下, 即使周期信号幅值A < AC, 布朗
粒子也能在噪声的帮助下实现跃迁, 系统发生随
机共振, 实现大范围输出.随机共振发生则意味着
信号、噪声和系统三者之间达到最优匹配. 由噪声
引起的布朗粒子在势阱间跃迁的速率可由著名的

Kramers逃逸速率给出 [6]

rK =
ωmωb

2πk
exp

(
− ∆U

D

)
, (3)

其中ωm =
√
U ′′(xm), ωb =

√
U ′′(xb)分别表示布

朗粒子在稳定平衡点xm和不稳定平衡点xb处的

振动角频率. 由此得到Duffing方程 (1)的Kramers
逃逸速率

rK =
a√
2πk

exp
(
− a2

4bD

)
. (4)

当布朗粒子在某一势阱中的平均驻留时间

TK = 1/rK与势函数的周期性变化时间 (周期信号
的半周期T/2)相等, 即满足

TK = T/2, (5)

或其等价形式

a√
2πk

exp
(
− a2

4bD

)
= 2f0 (6)

时, Duffing方程 (1)将发生随机共振 [6], 此时系统
输出信号的频率特征与信号频率特征相一致, 且幅
值大大增强.这就是Duffing振子的随机共振机理.

下面给出一组典型参数, 说明Duffing振子产
生的随机共振现象.在方程 (1)中, 给定参数条件

k = 0.5, a = b = 1, A = 0.1,

f0 = 0.01 Hz, D = 0.29, (7)

采用4阶Runge-Kutta算法对非线性微分方程进行
数值求解, 取采样频率 fs = 5 Hz (相应的计算步长
h = 1/fs = 0.2 s), 计算点数N = 20000, 输出谱平
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均十次 (以下计算同), 并令 sn(t) = s(t)+n(t)表示

输入信号, 得到方程 (1)的输入和输出信号的波形
及其频谱, 如图 2 . 从图 2中可以看出, Duffing 方
程在该参数条件下实现随机共振, 表现为输出频

谱的频率 f = f0处谱峰值达到最大, 且比输入频
谱 f = f0处谱峰值大得多. 本文将输出频谱频率
f = f0处的谱峰值记为Am, 将其作为判断随机共
振发生的依据, 即Am最大时, 随机共振发生.
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图 2 Duffing振子的随机共振 (a) 输入信号波形; (b) 输入信号频谱; (c) 输出信号波形; (d) 输出信号频谱

3 Duffing振子的广义调参随机共振
研究

3.1 Duffing振子的广义调参随机共振

Duffing振子发生随机共振时, 高频噪声能量
向低频信号转移, 使输出信号的强度大大增强, 从
而将信号凸显出来.因此, Duffing振子常作为一种
微弱信号检测模型, 用于实现强背景噪声下微弱信
号的特征提取.但是, 随机共振的产生, 需要信号、
噪声和系统三者实现最优匹配, 在对实际工程信号
的检测中, 这往往很难满足.于是人们提出Duffing
振子的调参随机共振, 进一步扩展其应用.

研究Duffing振子的调参随机共振具有两个重
要意义: 其一, 基于绝热近似理论的随机共振仅
适用于小参数条件 (同时要求A ≪ 1, D ≪ 1和

f0 ≪ 1), 小参数限制条件十分苛刻 [22], 而实际工
程参数往往不满足小参数条件, 此时可以通过调参
随机共振实现大参数信号的检测;其二, 信号、噪声
和系统三者非最优匹配时, 可通过调整一个或多个
参数, 使三者参数匹配, 实现随机共振.因此, 进一

步研究Duffing振子的调参随机共振机理就显得尤
为重要.

为了利用Duffing振子的随机共振模型对实际
工程信号进行检测, 人们通常会先对待测信号进行
线性幅值变换和时间/频率尺度变换,这样, Duffing
方程 (1)可改写为

ẍ+ kẋ− ax+ bx3

=ε

[
A cos

(
2π

f0
R
t′
)
+
√
2Dξ(t′)

]
=εA cos

(
2π

f0
R
t′
)
+
√
2ε2Dξ(t′), (8)

其中 ε是幅值变换系数, 用于实现待测信号的线性
放大或缩小; R是变尺度系数, 用于实现待测信号
的时间/频率尺度变换; t′ = Rt, 是变换后的时间尺
度; x = x(t′)是时间尺度 t′下的系统输出. 因此,对
待测信号进行线性幅值变换或尺度变换也可以理

解为一种广义调参手段. 这样, 对Duffing方程 (8)
的各参数进行调节使系统实现随机共振, 我们就称
为Duffing振子的广义调参随机共振. 这些参数包
括: 阻尼比参数 k; 系统参数a, b; 信号参数A, f0,
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D; 其他参数如幅值变换系数 ε，变尺度系数R.

3.2 基于Kramers逃逸速率的参数分析

本文以Kramers逃逸速率为工具, 对Duffing
振子的广义调参随机共振机理进行研究.由Duff-
ing方程 (1) 的随机共振实现条件 (6)式, 可以得到
Duffing方程 (8)的随机共振实现条件

a√
2πk

exp
(
− a2

4bε2D

)
= 2f0/R. (9)

首先, 我们利用 (9)式对Duffing方程 (8)的各
参数进行整体分析.定义函数

F (k, a, b, A, f0, D, ε,R)

=
aR

2
√
2πkf0

exp
(
− a2

4bε2D

)
, (10)

显然, 当F = 1时, 随机共振发生.因此称函数
(10)为随机共振的判别函数.由函数 (10) 可得以
下规律:

1) 函数F的取值与参数A无关;
2) 函数F是参数 b, D, ε, R的单调递增函数;
3) 函数F是参数k, f0的单调递减函数;
4) 当 a < ε

√
2bD, F随参数 a单调递增; 当

a > ε
√
2bD, F 随参数a单调递减.

其中前三点显然可知, 现在仅对第4)点进行简
单推导. 函数 (10)对参数a进行求导得

dF
da =

R

2
√
2πkf0

exp
(
− a2

4bε2D

)
+

aR

2
√
2πkf0

× exp
(
− a2

4bε2D

)
·
(
− 2a

4bε2D

)
=

R

2
√
2πkf0

exp
(
− a2

4bε2D

)
×
(
4bε2D − 2a2

4bε2D

)
, (11)

dF/da > 0即a < ε
√
2bD时, F随参数a单调递

增; dF/da < 0即 a > ε
√
2bD时, F随参数 a单调

递减. 得证.
根据判别函数 (10)所得的 4条参数规律, 可以

进一步深入研究Duffing振子的广义调参随机共振
机理, 这也是本文研究的基本依据. 其中, 对于给
定的待测信号, f0 和D 是信号参数不可调, 而k, a,
b, ε, R则是主要的调节参数.本文接下来将以参数
(7)为基准参数, 进一步研究这5个可调参数对不同
频率及噪声强度待测信号的调参随机共振机理.

需要说明的是, 函数 (10)只是对Duffing振子
调参随机共振机理的定性研究, 它可以解释各参数

对随机共振的影响及各参数之间的规律, 但不能仅
通过F = 1决定随机共振是否发生, 还需结合其他
因素进行考虑, 分析如下.

3.3 噪声强度的变化对随机共振的影响及

调参研究

随机共振的发生对噪声强度是存在一定要求

的, 当噪声强度太小时, 布朗粒子不能积累足够的
能量实现跃迁, 即发生 “欠共振”; 而当噪声强度太
大时, 由于超过系统产生随机共振的噪声强度, 过
多剩余的噪声只能作为残余噪声存在, 并淹没系统
输出的特征信号, 即发生 “过共振”. 因此, 一定参
数条件下Duffing振子的随机共振存在一最优噪声
强度值, 而待测微弱信号中的噪声强度往往很难满
足, 这一方面是由于微弱信号的背景噪声太强, 另
一方面是由于噪声强度不能与其他参数匹配.本节
将研究如何通过调参方法实现不同噪声强度信号

的随机共振.

3.3.1 调节阻尼比参数k

由 3.2的规律 2)和 3)可知, 为保证判别函数
F = 1, 在其他参数条件保持不变的情况下, 阻
尼比参数k 和噪声强度D呈正相关, 即大噪声强
度的信号, 需要匹配大的阻尼比参数 k, 反之亦
然.当噪声强度D取不同值时, 判别函数 (10)中
0 < exp(−a2/4bε2D) < 1, 因此理论上总有合适的
阻尼比参数k使得F = 1成立, 这说明阻尼比参数
调节随机共振对任意噪声强度值信号都是可行的.

以参数条件 (7)为基准进行研究.在Duffing系
统 (8)中, 令 ε = R = 1, 其他参数按条件 (7)给定,
我们保证其他参数条件不变, 取三个不同的阻尼比
参数k分别等于0.5, 1.5和2.5,同时,将噪声强度D

在 [0, 5] 区间进行取值, 对方程 (8) 进行数值求解,
得到不同阻尼比参数条件下输出频谱频率 f = f0

处的谱峰值Am随噪声强度D的变化规律, 如图 3 .
图 3中各曲线的最大值所对应的噪声强度值

D, 就表示该组参数条件下Duffing系统 (8)发生随
机共振的最优噪声强度值. 可以看出, 随着阻尼比
k的增大, Duffing系统发生随机共振的最优噪声强
度值也增大; 换言之, 随着系统输入信号噪声强度
增大, 与之匹配的阻尼比k的取值也随着增大. 因
此, 可以通过调节阻尼比参数k 的取值, 实现不同
噪声强度信号的随机共振. 具体方法为: 根据系统
输出波形和频谱图, 判断系统输出为欠共振 (噪声
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太小)或过共振 (噪声太大)状态, 若为欠共振, 则减
小k的取值, 反之增大k的取值.
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图 3 不同阻尼比参数条件下输出频谱频率 f = f0处的

谱峰值Am随噪声强度D的变化规律

阻尼比参数k对不同噪声强度信号的调节规

律也可以从阻尼力的概念进行理解.在Duffing方
程 (1)中, 阻尼力表征了介质对布朗粒子的阻碍作
用, 其大小取决于粒子的运动速度和阻尼比k的大

小.当系统输出为过共振状态, 即噪声强度D太大

时, 粒子的跃迁速率超过势函数的周期性变化, 此
时增大系统的阻尼比参数k, 可减缓粒子的跃迁速
率, 从而与势函数的周期性变化相匹配.反之亦然.

3.3.2 调节系统参数a

由3.2的规律4)可知, 判别函数F (a)随系统参

数a的增大先增后减,因此函数F (a)在a = ε
√
2bD

时取得最大值, 即

F (a) 6 ε
√
2bDR

2
√
2πkf0

exp
(
− ε22bD

4bε2D

)
=
ε
√
bDR

2πkf0
exp

(
− 1

2

)
. (12)

为了使判别函数F = 1, 即系统发生随机共振, 则
须满足

ε
√
bDR

2πkf0
exp

(
− 1

2

)
> 1,即D > 4eπ2k2f2

0

ε2bR2
. (13)

从 (12)和 (13)式可以看出, 系统参数a的调节

对小噪声信号的随机共振存在限制, 即其他参数一
定时, 如果噪声强度D太小, 那么不管怎样调节系
统参数a, 都无法使系统输出实现随机共振. 而且
这一临界噪声强度, 同时受到k, b, ε, R等参数的
共同影响.

当噪声强度D满足条件 (13)时, 结合 3.2的规
律 2)可知, 为保证函数F = 1, 在其他参数条件保
持不变的情况下, 系统参数a和噪声强度D先呈负

相关、后呈正相关, 因此, 从这一点来看, 对大噪声

强度的信号, 需要匹配小的 (当a < ε
√
2bD)或大的

(当a > ε
√
2bD)系统参数a.

但是, 系统参数a的调节困难在于, 随着待测
信号噪声强度D的改变, 判别函数F取最大值时参

数a的临界值 ε
√
2bD也随之改变, 那么调节系统参

数a的匹配规律就变成动态的了. 因此, 通过调节
系统参数a的取值来实现不同噪声强度输入信号

的随机共振, 我们只能得到一些定性的结论, 即使
参数a尽量小或尽量大, 显然, 这是缺乏一般性的
规律.

3.3.3 调节系统参数 b

由 3.2的规律 2)可知, 为保证判别函数F = 1,
在其他参数条件保持不变的情况下, 系统参数 b 和

噪声强度D呈负相关, 即大噪声强度的信号, 需要
匹配小的系统参数 b, 反之亦然. 从函数 (10)可以
看出, 系统发生随机共振时, 保持其他参数条件不
变, 当噪声强度D改变, 只要同时改变系统参数 b

并保证 bD不变, 则总能保持F = 1, 这说明系统参
数 b的调参随机共振对任意噪声强度值信号都是可

行的.
同样以参数条件 (7)为基准进行研究.在Duff-

ing系统 (8)中, 令 ε = R = 1, 其他参数按条件 (7)
给定, 我们保证其他参数条件不变, 取三个不同的
系统参数 b分别等于 0.5, 1和 1.5, 同时, 将噪声强
度D在 [0, 5]区间进行取值, 对方程 (8) 进行数值求
解, 从而得到不同系统参数 b条件下输出频谱频率

f = f0处的谱峰值Am 随噪声强度D的变化规律,
如图 4 .
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图 4 不同系统参数 b条件下输出频谱频率 f = f0处的

谱峰值Am随噪声强度D的变化规律

从图 4可以看出, 随着系统参数 b的增大,
Duffing系统发生随机共振的最优噪声强度值减
小;换言之, 随着系统输入信号噪声强度增大, 与之
匹配的系统参数 b的取值随之减小.因此, 可以通
过调节系统参数 b的取值, 实现不同噪声强度信号
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的随机共振, 具体方法为, 根据系统输出波形和频
谱图, 判断系统输出为欠共振 (噪声太小)或过共振
(噪声太大)状态, 若为欠共振, 则增大 b 的取值, 反
之减小 b 的取值.

系统参数 b对不同噪声强度信号的调节规律也

可以从势垒角度进行理解, 因为判别函数 (10)中参
数 b 只来源于势垒高度项∆U = a2/(4b). 当系统
参数 b增大时, Duffing系统势垒高度随之减小, 则
布朗粒子跃迁所需要的噪声强度 (即随机共振的最
优噪声强度)也减小, 这与图 4结果是一致的. 此
外, 由于 b的增大, 阱间距d = 2

√
a/b随之减小, 则

布朗粒子跃迁的最大位移也减小, 这在图 4中体现

为随着 b 的增大, Am-D曲线的最大值随之减小.

3.3.4 调节幅值变换系数ε

由3.2的规律2)可知, 为保证函数F = 1, 在其
他参数条件保持不变的情况下, 幅值变换系数 ε和

噪声强度D呈负相关, 即大噪声强度的信号, 需要
匹配小的幅值变换系数 ε, 反之亦然. 这与系统参
数 b的规律是一致的. 但幅值变换系数 ε的调节, 却
同时受到其他因素的影响.

容易理解, 当待测信号噪声强度值D增大时,
通过减小幅值变换系数 ε, 可以减小输入Duffing系
统的噪声强度值, 但同时 ε也缩小了输入系统的信

号幅值A. 虽然从函数 (10) 看信号幅值A似乎对

系统随机共振的发生不产生影响, 但事实上, 信号
幅值A的变化同样也影响随机共振, 因为函数 (10)
或方程 (9) 仅仅是从频率或逃逸速率角度分析随机
共振, 并没有从信号幅度与噪声水平的匹配关系进
行分析, 而随机共振的核心是信号、噪声和系统三
者所包含的频率、幅值等要素要达到协同匹配. 从
方程 (8)易知, 幅值变换系数 ε变化时, 噪声强度D

的变化率比信号幅值A的变化率要快. 对于大的
噪声强度值D, 如果 ε的取值很小, 那么幅值变换
后输入系统的信号幅值A将太小, 即周期驱动力太
小, 此时即使噪声存在, 也很难使布朗粒子实现跃
迁. 因此, 减小幅值变换系数 ε对实现大噪声强度

信号的随机共振在一定范围内有效, 这是幅值变换
系数 ε调节方法处理不同噪声强度信号的局限性,
一般只适合于一定范围内的微调.

3.3.5 调节变尺度系数R

对待测信号进行时间/频率尺度变换, 是通过
调节变尺度系数R来实现的.具体含义为, 对于一
组以采样频率 fs采集的频率为 f0的待测信号, 其
离散数据的时间间隔 dt = 1/fs, 引入变尺度系数

R, 人为地将信号的时间间隔理解为放大R倍, 使
dt′ = R/fs, 以步长h = R/fs进行数值计算, 则相
当于周期信号的频率被压缩了R倍, 即 f ′

0 = f0/R.
这一变换的本质在于: 一个采样频率为 fs、频率为

f0的实测信号通过变尺度系数R进行尺度变换之

后, 变成了一个二次采样频率为 fsr = fs/R, 频率
为 f ′

0 = f0/R的信号.
由 3.2的规律 2)可知, 为保证判别函数F = 1,

在其他参数条件保持不变的情况下, 变尺度系数R

和噪声强度D呈负相关, 即大噪声强度的信号, 需
要匹配小的变尺度系数R, 反之亦然.这与系统参
数 b 的规律也是一致的.

同样以参数条件 (7)为基准进行研究. 在Duff-
ing系统 (8)中, 令 ε = 1, 其他参数按条件 (7) 给定,
保持其他参数条件不变, 取三个不同的变尺度系数
R 分别等于0.5, 1和2, 同时, 将噪声强度D在 [0, 5]

区间进行取值, 对方程 (8) 进行数值求解, 得到不
同变尺度系数R条件下输出频谱频率 f = f0处的

谱峰值Am随噪声强度D的变化规律, 如图 5 .
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图 5 不同变尺度系数R条件下输出频谱频率 f = f0处

的谱峰值Am随噪声强度D的变化规律

从图 5可以看出, 随着变尺度系数R的增大,
Duffing系统发生随机共振的最优噪声强度值减小;
换言之, 随着系统输入信号噪声强度增大, 与之
匹配的变尺度系数R的取值随之减小.因此, 可以
通过调节变尺度系数R的取值, 实现不同噪声强
度信号的随机共振.同时可以看出, 随着R的增大,
Am-D 曲线的最大值也随之增大, 这是因为, R增
大相当于输入信号的频率 f ′

0 = f0/R减小, 信号越
接近低频区域, 由于噪声能量的低频积聚性, 信号
可从噪声处所获得的能量就越多, 因此系统发生随
机共振时的信号谱峰值也就越大.

需要注意的是, 虽然从判别函数 (10)来看, 不
管噪声强度D为何值, 总应该存在合适的变尺度系
数R 与之匹配, 但其实不然.首先, 如果噪声强度
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D大, 需要减小变尺度系数R, 则输入信号的频率
f ′
0 = f0/R增大, 如果R的取值太小, f ′

0 容易超出

合适的小参数范围, 使随机共振输出效果变差;其
次, 如果噪声强度D小, 需要增大变尺度系数R, 那
么, 输入信号的二次采样频率 fsr = fs/R减小, 而
数值计算的步长h = 1/fsr = R/fs, 如果R的取值

太大, 会使计算误差增大甚至发生溢出.因此, 对于
不同噪声强度的信号, 变尺度系数R也存在一定的

调节范围, 才能使系统输出实现随机共振.

3.4 信号频率的变化对随机共振的影响及

调参研究

待测信号的另一个重要参数是特征信号的频

率 f0. 与噪声强度不同, 频率参数的变化可能更为
悬殊. 例如,满足参数条件 (7)时Duffing方程 (1)能
够实现随机共振, 此时D = 0.29和 f0 = 0.01 Hz均
为小参数, 当噪声强度增强到大参数D′ 时, D′/D

的比值往往不会特别大, 否则信号信噪比极低, 即
使通过调参方式也无法进行检测;而当信号频率增
大到大参数 f ′

0时, f ′
0/f0的比值却可能非常大, 达

到上千倍甚至上万倍.因此研究信号频率的变化对
随机共振的影响及调参随机共振机理, 主要针对的
是大频率参数信号.

实测信号的特征信号频率可能远远大于绝热

近似要求的小参数范围, 此时, 频率 f0的增大导致

系统响应x(t)越来越滞后于输入 [23], 从Kramers
逃逸速率的角度看, 即表现为 rK 6 2f0, 或判别函
数F 6 1, 布朗粒子的跃迁无法跟上周期信号转变
的速率, 系统无法实现随机共振.下面分析大频率
信号的调参随机共振方法.

仍然从判别函数 (10)入手分析.从函数 (10)
可以看出, 等号右端的指数项对布朗粒子的跃
迁速率存在制约, 从而对判别函数F 的取值存

在制约, 即无论参数 b 和 ε 取何值, 都要满足
0 < exp(−a2/4bε2D) < 1. 函数F受其制约, 需
要满足

F =
aR

2
√
2πkf0

exp
(
− a2

4bε2D

)
∈
(
0,

aR

2
√
2πkf0

)
,

(14)

从 (14)式可以看出, 对于一定的参数, 若信号频率
f0增大到使aR/(2

√
2πkf0) < 1, 那么, 1) 单独调

节参数 b和 ε的取值显然无法满足F = 1, 系统输出
不能实现大频率信号的调参随机共振; 2) 如果单独
调节阻尼比参数k, 由 (14)式知, 当信号频率从 f0

增大到 f ′
0 时, 只需减小参数k到k′使k′f ′

0 = kf0,

即可使F = 1保持不变.但是需要注意, 当k′ 极小

时, 布朗粒子跃迁将不再满足Kramers逃逸速率
(4)式, 因为k′ 极小的时候, rK趋于无穷大, 表示
粒子跃迁速率无穷大, 这显然是不对的, 进而以
F = 1来判断随机共振发生也就没有意义了; 3)系
统参数a的单独调节同样不适用. 由 (12)式可知,
当信号频率 f0很大时

F (a) 6 ε
√
bDR

2πkf0
exp

(
− 1

2

)
≪ 1, (15)

即无法通过单独调节系统参数a满足F = 1, 使系
统输出实现随机共振.

以上分析表明, 如果想通过单独调节某一参数
实现大频率信号的随机共振, 只能调节变尺度系
数R. 由 3.2的规律 2)和 3)可知, 为保证判别函数
F = 1, 在其他参数条件保持不变的情况下, 变尺
度系数R 和信号频率 f0呈正相关, 即大频率的信
号, 需要匹配大的变尺度系数R. 由判别函数 (10)
可知, 只要改变参数使R/f0保持不变, 就能使系统
输出实现随机共振. 文献 [15]就是通过这种变尺度
的方法实现大频率信号的随机共振.

3.5 Duffing振子广义调参随机共振规律
的总结

根据前文分析, 表 1总结出当噪声强度D或信

号频率 f0(大参数)变化时, Duffing振子随机共振
的参数调节规律. 从中可以看出, 当信号频率 f0为

大参数时, 只能通过调节变尺度系数R 来实现系

统的随机共振. 而噪声强度D变化时, 参数 k, a,
b, ε, R的调节均可实现系统的随机共振, 其中阻尼
比参数k和系统参数 b的调节规律较为简便, 而系
统参数a的调节规律较为复杂, 幅值变换系数 ε和

变尺度系数R则只适合微调.由这些规律我们得到
Duffing振子广义调参随机共振的一般方法.

实际应用中, 参数调节顺序是: 首先, 根据实
际信号的估算频率取合适的信号采样频率 fs, 对
信号进行采集, 将采集到的信号 sn(t)进行线性放

大或缩小, 调节幅值变换系数 ε使变换后的信号

(sn′(t) = εsn(t))幅值落入合适的小参数范围之内;
其次, 对待测信号 sn′(t)进行时间/频率尺度变换,
调节变尺度系数R, 使尺度变换后的信号频率 f ′

0落

入合适的小参数范围之内; 最后, 保持变尺度系数
R不变, 根据系统的输出波形和频谱判断系统所处
的过共振或欠共振状态, 根据表 1调参规律调节阻

尼比参数k或系统参数 b的取值. 如有需要,可进一
步微调幅值变换系数 ε, 从而使系统发生随机共振.
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表 1 噪声强度D或信号频率 f0变化时Duffing振子随机共振的参数调节规律

参数 随噪声强度D变化的调节规律 随信号频率 f0(大参数)变化的调节规律

阻尼比参数 k D较大, 增大 k; 或相反 无效

当 a < ε
√
2bD时, D较大, 减小 a;或

相反

系统参数 a 无效

当 a > ε
√
2bD时, D较大, 增大 a;或

相反

系统参数 b D较大, 减小 b; 或相反 无效

幅值变换系数 ε

D较大, 减小 ε;或相反
无效

但 ε不能太小, 适合微调

变尺度系数R

D较大, 减小 R; 或相反 f0较大, 增大 R, 使 f0/R保持不变

但需在一定范围内调节

4 结 论

二维Duffing振子的随机共振是信号、噪声和
非线性系统三者之间实现最优匹配的结果. 作为一
种常用的微弱信号检测模型, 其应用的最大困难在
于待测信号中的信号参数和噪声强度往往很难与

非线性系统实现最优匹配.由此, 本文提出Duffing
振子的广义调参随机共振, 其参数不仅包含信号参
数、噪声强度与系统各参数, 还包括实际工程应用
中涉及到的幅值变换系数和时间/频率尺度变换系
数. 通过Kramers 逃逸速率所建立的Duffing振子
广义调参随机共振的判别函数, 阐述了Duffing振
子在不同频率及噪声强度输入信号条件下的广义

调参随机共振机理.研究表明, 当输入信号的噪声
强度发生变化时, 为实现系统的调参随机共振, 通
过调节阻尼比参数k和系统参数 b较为简便, 系统
参数a的调节规律较为复杂, 而幅值变换系数 ε和

变尺度系数R则只适合微调;当输入信号的频率为
大参数时, 则只能通过调节变尺度系数R来实现系

统的调参随机共振. 本文的研究能够为实际工程中
Duffing振子调参随机共振的微弱信号检测提供理
论依据.
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Abstract
The stochastic resonance (SR) of two-dimensional Duffing oscillator is studied in this paper. We propose the

generalized parameter-adjustment SR of Duffing oscillator. On the basis of Kramers rate, we build a discrimination
function of the SR of Duffing oscillator, and we expound the generalized parameter-adjustment SR laws of Duffing oscil-
lator under different noise intensity and signal frequency conditions. The general method of generating the generalized
parameter-adjustment SR of Duffing oscillator is also given in this paper.
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