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随机摄动强跟踪粒子滤波算法∗
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如何解决粒子的退化问题和提高算法对突变状态的跟踪能力, 是粒子滤波算法研究和应用中需要考虑的
两个主要因素. 传统的再采样算法虽然可以解决退化问题, 但是容易导致粒子耗尽; 扩展粒子滤波算法虽然
可在一定程度上解决粒子耗尽问题, 但其对突变状态的跟踪能力却不近人意; 强跟踪粒子滤波算法可以提高
对突变状态的跟踪能力, 但却未能较好地改善粒子退化问题. 针对上述问题, 本文将随机摄动再采样方法引
入强跟踪粒子滤波算法, 提出了一种随机摄动强跟踪粒子滤波算法. 当粒子退化问题严重时, 对权值最大的
粒子迭加随机摄动, 用摄动粒子替换退化粒子以解决粒子退化问题, 同时由于摄动粒子的加入增加了粒子集
的多样性, 可在一定程度上缓解粒子耗尽问题, 提高算法对突变状态的跟踪能力. 利用标准验证模型和分时
恒定系统对所提出的算法进行了仿真验证, 仿真结果证明了该算法的可行性和有效性.
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1 引 言

粒子滤波算法 (particle filter, PF)是非线性非
高斯系统中状态估计的主流算法 [1,2], 目前已经在
诸多领域得到了成功应用, 如目标跟踪 [3]、数据检

测 [4]、计算机视觉 [5] 和故障诊断 [6]等. 粒子滤波
算法在应用中存在的主要问题是粒子退化问题和

粒子耗尽问题, 即经过多次迭代之后, 除了少数的
几个粒子权值不为零之外, 其余大部分粒子的权值
几乎接近甚至等于零, 这样就会导致大量的计算资
源浪费在毫无意义的粒子上. 很多学者致力于粒
子退化问题研究并提出了一些解决方法, 这些方
法可以概括为以下两类: 一类是对粒子进行再采
样, 另一类是选取适当的重要性密度函数. 在再采
样算法研究方面, 目前提出的主要算法包括分层采
样、留数采样、系统采样等等, 再采样粒子滤波算法
(sequential importance re-sampling, SIR)[7]是其中
的代表性算法, 其基本思想是通过复制粒子集中

权值较大的粒子, 并替换权值较小的粒子. 虽然
再采样粒子滤波算法可以在一定程度上解决退化

问题, 但是由于经过再采样后, 具有较大权值的
粒子被多次复制, 致使粒子集仅包含很少的相异
样本, 从而使粒子丧失多样性. 在选取适当的重
要性密度函数研究方面, 国内外很多学者开展了
相关研究工作 [8,9], De Freitas将扩展卡尔曼滤波
算法 (extended Kalman filtering, EKF) 引入粒子
滤波, 形成了扩展粒子滤波器 (extended particle
filter, EPF)[10]. 而Rudolph van der Merwe将无
迹卡尔曼滤波算法 (unscented Kalman filtering,
UKF)引入粒子滤波, 从而提出了无迹粒子滤波器
(unscented particle filter, UPF)[11]. EKF和UKF
算法都在一定程度上解决了粒子退化问题, 但是由
于这两种算法本身的局限性, 使得EPF和UPF对
突变状态容易出现较大的跟踪误差.

针对上述问题, 作者在文献 [12]中将强跟
踪滤波算法 (strong tracking filter, STF)[13]引入
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粒子滤波, 利用STF产生重要性密度函数, 提
出了一种强跟踪粒子滤波算法 (strong tracking
particle filter, STPF). STF算法对突变状态有着
独特的跟踪能力, 而STPF算法很好地继承了
STF 算法在突变状态跟踪方面的优越性能, 因
此STPF算法对突变状态的跟踪精度很高. 但
由于选取重要性密度函数进行再采样方法本身

的局限性, STPF算法在解决粒子退化问题方面
的效果依然不尽人意. 本文针对上述问题, 将
随机摄动再采样方法引入STPF, 提出了随机摄
动强跟踪粒子滤波算法 (stochastic perturbation
strong tracking particle filter, SPSTPF), 以期保
证粒子滤波算法对突变状态跟踪精度的同时, 解决
或缓解算法的粒子退化问题.

2 粒子滤波算法

粒子滤波算法是一种典型的基于序贯重点采

样 (sequential importance sampling, SIS)的非线性
滤波方法. 对于基本粒子滤波算法的详细信息参见
文献 [7].

考虑一个典型的非线性动态系统

xk = f(xk−1, νk−1),

yk = h(xk, nk), (1)

其中, xk ∈ Rnx是 k时刻系统的状态向量, yk ∈
Rny是系统的观测输出, νk ∈ Rnν是系统噪声,
nk ∈ Rnn是观测噪声, 映射

f : Rnx ×Rnv 7→ Rnx ,

h : Rnx ×Rnn 7→ Rny , (2)

分别构成系统的状态方程和观测方程. 通常用粒子
集中有效粒子的个数Neff对粒子滤波算法的退化

程度进行度量, Neff的定义如下式所示:

Neff = round


1

N∑
i=1

(
wi

k

)2
 . (3)

(3)式中 round(·)表示向最近的整数取整, wi
k

表示k时刻第 i个粒子的归一化权值, 若Neff越小

则表明粒子退化问题越严重.
SIR算法是粒子滤波算法的代表性算法, 其算

法流程如下 [7]:

步骤1 初始化. 在k = 0时刻, 根据重要性
密度函数抽样得到N个粒子, 假定抽样出的每个粒
子用

⟨
xi
k, 1/N

⟩
表示, 令k = 1.

步骤2 更新每一个粒子的状态.

xi
k = f

(
xi
k−1, νk−1

)
. (4)

由xi
k−1根据 (4)式, 更新k时刻的粒子xi

k.
步骤3 对每个粒子赋予一定的权值, 即

加权,

wi
k = wi

k−1p
(
yk|xi

k

)
. (5)

根据 (5)式计算xi
k的权值.

步骤4 对权值归一化处理,

wi
k =

wi
k

N∑
i=1

wi
k

. (6)

步骤5 如果有效粒子数小于N/3, 则进行再
采样, 同时对粒子集中的粒子重新赋予权值,

wi
k =

1

N
. (7)

步骤6 估计k时刻粒子状态,

x∗
k =

N∑
i=1

xi
k × wi

k. (8)

令k = k + 1, 返回步骤2.

3 强跟踪滤波算法 [13]

当一个系统达到稳态, 并且滤波器也达到稳态
时, 常规的EKF算法将几乎丧失对突变状态的跟
踪能力, 跟踪结果误差很大甚至发散. 强跟踪滤波
算法具有很好的动态跟踪能力, 本文提及的强跟踪
滤波算法指带次优渐消因子的扩展卡尔曼滤波器.

考虑如下非线性系统:

x(k + 1) = f(k, u(k), x(k)) + Γ (k)v(k), (9)

y(k + 1) = h(k + 1, x(k + 1)) + e(k + 1), (10)

其中, x ∈ Rn为状态向量; y ∈ Rm 为输出向量.
u ∈ Rp为输入向量; 整数k > 0为离散时间变量;
非线性函数

f : Rp ×Rn → Rn, h : Rn → Rm,

具有关于系统状态的一阶连续偏导数. Γ ∈ Rn×q

为已知矩阵. 测量噪声 e(k)和系统噪声 v(k)分别

为m 维和 q维的高斯白噪声, 并且具有如下统计
特性:

Ev(k) = Ee(k) = 0, (11)
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E
[
v(k)vT(j)

]
= Q(k)δk,j , (12)

E
[
e(k)eT(j)

]
= R(k)δk,j , (13)

E
[
v(k)eT(j)

]
= 0, (14)

其中, R(k)为对称正定阵; Q(k)为对称非负定阵.
初始状态x(0) ∼ N(x0, P0), 且x(0)与 v(k),

e(k)统计独立.
STF的计算流程如下:
步骤1 初始化. 令k = 0,选择初始值 x̂(0|0),

P (0|0)和弱化因子β.
步骤2

x̂(k + 1|k) = f(k, u(k), x̂(k|k)) (15)

H(k + 1, x̂(k + 1|k))

=
∂h(k + 1, x(k + 1))

∂x

∣∣∣∣
x(k+1)=x̂(k+1|k)

,

F (k, x̂(k|k))

=
∂f(k, u(k), x(k))

∂x

∣∣∣∣
x(k)=x̂(k|k)

, (16)

γ(k + 1) = y(k + 1)

− h(k + 1, x̂(k + 1|k)). (17)

由 (15)式得到 x̂(k + 1|k); 由 (16)式得到
H (k + 1, x̂(k + 1|k))和F (k, x̂(k|k)); 由 (17)式得
到γ(k + 1).

步骤3 计算渐消因子λ(k + 1).

V0(k+1)=


γ(1)γT(1), k = 0,

ρV0(k)+γ(k+1)γT(k+1)

1+ρ
,

k > 1,

(18)

N(k+1) = V0(k + 1)−H(k + 1, x̂(k+1|k))Γ (k)

×Q(k)ΓT(k)HT(k + 1, x̂(k + 1|k))

− β ·R(k + 1), (19)

M(k+1) = H(k+1, x̂(k+1|k))F (k, u(k), x̂(k|k))

× P (k|k)FT(k, u(k), x̂(k|k))

×HT(k + 1, x̂(k + 1|k)), (20)

λ0 =
tr[N(k + 1)]

tr[M(k + 1)]
, (21)

λ(k + 1) =

λ0, λ0 > 1,

1, λ0 < 1.
(22)

步骤4 计算状态估计值 x̂(k + 1|k + 1).

P (k + 1|k) = λ(k + 1)F (k, u(k), x̂(k|k))

× P (k|k)FT(k, u(k), x̂(k|k))

+ Γ (k)Q(k)ΓT(k), (23)

K(k + 1) = P (k + 1|k)HT(k + 1, x̂(k + 1|k))

×
[
H(k + 1, x̂(k + 1|k))P (k + 1|k)

×HT(k + 1, x̂(k + 1|k))

+R(k + 1)
]−1

. (24)

由P (k + 1|k)和K(k + 1), 得到状态估计值

x̂(k + 1|k + 1)

= x̂(k + 1|k) +K(k + 1)γ(k + 1). (25)

步骤5 计算P (k + 1|k + 1).

P (k + 1|k + 1)

= [I −K(k + 1)H(k + 1, x̂(k + 1|k))]

× P (k + 1|k). (26)

令k = k + 1, 返回步骤2.

4 随机摄动强跟踪粒子滤波算法

退化问题是粒子滤波算法在应用中存在的主

要问题之一 [7]. SIR算法在一定程度上解决了粒子
退化问题, 但产生了严重的粒子耗尽问题; EPF算
法也在一定程度上解决了退化问题, 但对跟踪系统
的突变状态, 却无能为力. 鉴于STF 算法对突变状
态的强跟踪能力, 作者在文献 [12]中尝试将STF引
入粒子滤波算法, 利用STF更新粒子, 并根据STF
的计算结果, 产生新的重点密度, 旨在缓解粒子退
化问题, 并提高算法的跟踪能力.

STF算法在突变状态跟踪方面具有优越的性
能, STPF算法也很好地继承了这一优点, 所以
STPF 算法对突变状态的跟踪精度得到了大幅提
高. 然而由于STPF采用选取重要性密度函数进
行再采样, 鉴于这类再采样算法本身的局限性, 致
使STPF算法依然不能很好地解决粒子退化问题.
针对上述问题, 本文将随机摄动再采样方法引入
STPF, 提出了一种随机摄动STPF算法: 当粒子
集中的有效粒子数低于N/3(N为粒子集中的粒子
数)时, 采用随机摄动再采样方法进行再采样, 旨在
有效解决STPF算法的粒子退化问题, 并保持算法
在跟踪突变状态方面的优越性能.
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4.1 随机摄动再采样算法

算法思想: 当有效粒子数小于N/3的时候, 对
权值最大的粒子进行变异, 变异个数为退化的粒子
数, 再分别计算变异粒子的权值, 并用变异粒子替
换粒子集中的退化粒子. 一般的再采样算法总是对
所有粒子进行再采样, 导致计算量比较大. 而随机
摄动再采样算法只是在退化现象严重时, 对最优粒
子进行变异, 这样可以在一定程度上减少计算量,
使样本集保持一定多样性. 保证最好的粒子被用于
后验概率密度的估计, 减轻退化现象的影响, 从而
使算法具有较好的跟踪能力.

定义1 设样本集中的粒子数为N , 有效粒子
数为Neff, 则随机摄动再采样粒子数Nsp 为

Nsp = N −Neff. (27)

定义2 设样本集中权值最大的粒子为 x̄1
k,有

效粒子数为Neff, 则随机摄动再采样粒子为

x̄
[1:Nsp]
k = x̄1

k + randn(), (28)

式中 randn()表示随机摄动 (通常取 randn()的均值
和方差为初始粒子概率密度函数的1/10).

算法流程:
步骤1 判断, 如果Neff < N/3.
步骤2 将xi

k按照wi
k降序排序为 x̄i

k.
步骤3 有效粒子保持不变

x̄
[1:Neff]
k = x̄

[1:Neff]
k .

步骤4 对失效粒子进行随机摄动再采样

x̄
[(Neff+1):N ]
k = x̄1

k + randn(). (29)

步骤5 对再采样后的粒子集中的粒子重新

赋予权值

w
[1:N ]
k =

1

N
. (30)

4.2 SPSTPF

算法流程:
步骤1 初始化.
根据初始值 x̂(0|0)和P (0|0)抽样, 得到初始粒

子集 {⟨xi
0, 1/N⟩|i = 1, · · · , N}, 选择弱化因子β,

令k = 1.
步骤2 调用STF算法的 (15)—(25)式, 更新

粒子集中的粒子, 得到粒子的状态估计值和重要性
密度函数

q
(
xi
k|xi

k−1, yk
)

= N
(
x̂(k + 1|k)i, P (k + 1|k)i

)
. (31)

步骤3 粒子加权,

wi
k = wi

k−1 ×
p
(
yk|xi

k

)
p
(
xi
k|xi

k−1

)
q
(
xi
k|xi

k−1, yk
) . (32)

步骤4 权值归一化处理,

wi
k =

wi
k

N∑
i=1

wi
k

. (33)

步骤5 计算状态估计值,

x∗
k ≈

N∑
i=1

wi
k × xi

k. (34)

步骤6 判断如果Neff < N/3.
步骤7 xi

k按照wi
k降序排序为 x̄i

k.
步骤8 前面的Neff个有效粒子保持不变,

x̄
[1:Neff]
k = x̄

[1:Neff]
k .

步骤9 变异.

x̄
[(Neff+1):N ]
k = x̄1

k + randn(), (35)

(35)式中 x̄1
k为样本集中权值最大的粒子,

randn()表示随机摄动.
步骤10

w
[1:N ]
k =

1

N
. (36)

步骤11 令k = k + 1, 返回步骤2.
引理 正交性原理 [13]

使得 (25)式的滤波器为强跟踪滤波器的一个
充分条件是选择一个适当的时变增益阵K(k + 1),
使得

1) E[x(k + 1)− x̂(k + 1|k + 1)] · [x(k + 1)

− x̂(k + 1|k + 1)]T = min . (37)

2) E
[
γ(k + 1 + j)γT(k + 1)

]
= 0,

k = 0, 1, 2, · · · ; j = 0, 1, 2, · · · (38)

SFEKF满足如上的正交性原理.
对于SPSTPF算法而言, 最终的状态估计值

x̂(k + 1|k + 1) =

N∑
i=1

wi
k+1x̂

i(k + 1|k + 1),

其中

N∑
i=1

wi
k = 1. (39)
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定理 SPSTPF算法是强跟踪滤波器, 即SP-
STPF算法满足

1) E

[
x(k + 1)−

N∑
i=1

wi
k+1x̂

i(k + 1|k + 1)

]

×

[
x(k + 1)−

N∑
i=1

wi
k+1x̂

i(k + 1|k + 1)

]T

= min, (40)

2) E
[
γ(k + 1 + j)γT(k + 1)

]
= 0,

k = 0, 1, 2; · · · ; j = 1, 2, · · · (41)

证明

1) E

[
x(k + 1)−

N∑
i=1

wi
k+1x̂

i(k + 1|k + 1)

]

×

[
x(k + 1)−

N∑
i=1

wi
k+1x̂

i(k + 1|k + 1)

]T

= E

[
N∑
i=1

wi
k+1x(k + 1)

−
N∑
i=1

wi
k+1x̂

i(k + 1|k + 1)

]

×

[
N∑
i=1

wi
k+1x(k + 1)

−
N∑
i=1

wi
k+1x̂

i(k + 1|k + 1)

]T

= E

(
N∑
i=1

wi
k+1

)2 [
x(k + 1)− x̂i(k + 1|k + 1)

]
× [x(k + 1)− x̂(k + 1|k + 1)]

T
.

由 (39)式, 得

上式 = E [x(k + 1)− x̂(k + 1|k + 1)] · [x(k + 1)

− x̂(k + 1|k + 1)]T.

由 (37)式, 可得

E

[
x(k + 1)−

N∑
i=1

wi
k+1x̂

i(k + 1|k + 1)

]

×

[
x(k + 1)−

N∑
i=1

wi
k+1x̂

i(k + 1|k + 1)

]T

= min .

(40)式得证.
2) SFEKF满足正交性原理,所以SFEKF满足

(38)式. 而SPSTPF是在SFEKF的基础上提出的,
且粒子滤波算法不影响γ(k + 1)的计算结果, 所以
(41)式成立.

综上所述, 定理得证.

5 算法仿真实验及结果分析

对于SPSTPF算法, 选用两个仿真实例验证
SPSTPF算法在解决退化问题和估计突变状态方
面的能力. 实例1是粒子滤波算法的标准验证模型,
用来验证SPSTPF算法估计标准验证模型状态和
解决退化问题的能力; 实例 2用来验证SPSTPF对
突变状态的强跟踪能力.

5.1 标准验证模型的仿真实验及结果分析

验证实例1 标准验证模型

该模型在大量文献 [14]中均可看到, 是研究各
种粒子滤波算法性能的标准验证模型之一.

状态方程和观测方程为

xk = f(xk−1, k) + νk−1,

yk =
x2
k

20
+ nk, (42)

其中

fk(xk−1, k) =
xk−1

2
+

25xk−1

1 + x2
k−1

+ 8 cos(1.2k), (43)

nk和 νk是均值为 0, 方差分别为Rk = 1, Qk = 10

的高斯噪声. 初始概率密度函数为N(0, 5), x0 =

0.1, ρ = 0.95, β = 4. 取N = 100(即粒子数为 100)
来进行 100步的迭代估计. 图 1所示为SPSTPF算
法对标准验证模型的估计情况图.

由图 1 (a)—(d)可见, SPSTPF算法能很好地
跟踪标准验证模型的状态, 说明SPSTPF算法在状
态跟踪方面是可行并有效的.

有效样本数Neff是评价粒子滤波算法退化现

象的重要指标, Neff越小表示退化现象越严重. 为
了验证SPSTPF算法对退化现象的改善情况, 对
STPF算法和SPSTPF算法分别运行10次, 并分别
求其有效样本数的平均值, 以作验证.

表 1 有效样本数

次数 1 2 3 4 5 6 7 8 9 10

Neff1 92 75 82 100 43 86 78 69 73 98

Neff2 35 27 39 43 57 21 12 19 26 47

Ñeff1 = 79.6, Ñeff2 = 32.6.
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表 1中, Neff1和 Ñeff1分别代表SPSTPF的有
效样本数和平均有效样本数; Neff2和 Ñeff2分别代

表STPF的有效样本数和平均有效样本数.
从表 1以及两种算法Neff的平均值可见, SP-

STPF的有效样本数平均值 Ñeff1 为STPF有效样
本数平均值 Ñeff2的 2.4倍, SPSTPF在解决退化问
题方面明显优于STPF. 仿真结果说明由于随机摄

动再采样方法的引入, SPSTPF可以很好地解决退

化问题.

算法第 100步估计之后的粒子权值分布图能

更直观地说明SPSTPF算法相对于STPF算法对

退化问题的解决程度, 两种算法第 100步迭代之后

的粒子权值分布图分别如图 2 (a)和 (b)所示.
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(c)         
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图 1 仿真结果 (a)过程噪声; (b) 观测噪声; (c) 观测值; (d) 状态估计结果
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图 2 粒子权值分布图 (a) SPSTPF; (b) STPF
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由图 2 (a)可见, SPSTPF算法的100个粒子权
值均匀分布在 [0,0.015]区间, 只有个别粒子的权
值为 0, 大部分粒子为有效粒子; 由图 2 (b)可见,
STPF的 100个粒子权值分布在 [0,0.025]区间, 大
部分粒子的权值为 0, 只有少部分粒子为有效粒子.
可见SPSTPF算法相对于STPF可以很好地解决
退化问题.

粒子耗尽, 即经过再采样之后, 粒子集中的相
异粒子数较少. 很多再采样方法虽然可以解决退
化问题, 但是对粒子耗尽问题却束手无策, SIR算
法就是一个典型的例子. 为了验证SPSTPF算法
在解决退化问题的同时有没有造成粒子耗尽, 将
SPSTPF和STPF算法在第 100步迭代之后的粒子
分布图进行比较, 如图 3所示.

(b)         
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32

34

36

38

↼x
↽

↼x
↽
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-10

-5

0

5

10

15

(a)    

图 3 STPF粒子分布图 (a) SPSTPF; (b) STPF

由图 3 (a)可见, SPSTPF算法在迭代 100步之
后的粒子均匀分布在真实值两侧, 重复粒子少, 粒
子的多样性很好; 从图 3 (b)可见, STPF迭代 100
步之后, 粒子分布在 [−10, 15]之间, 粒子过于分散,
且粒子集中的相同粒子较多, 只有少数的相异粒
子, 粒子多样性较差. 综上所述, SPSTPF算法的
粒子集中相异粒子较多, 粒子的多样性好, 不存在

粒子耗尽问题.

5.2 分时恒定系统仿真实验及结果分析

验证实例2 分时恒定系统估计问题 [15]

设系统状态方程和观测方程为

x(t) =


3, 0 6 t < T/5,

8, T/5 6 t < 4T/5,

3, 4T/5 ≤ t 6 T ,

(44)

y(t) = x(t) +N(0, Q). (45)

其中T = 50, Q = 1, 初始样本方差为 5, ρ=0.95,
β = 4. 粒子滤波的样本个数为 100, 进行 50 步的
迭代估计. 为了验证SPSTPF算法对突变状态的
跟踪能力, 分别选用粒子滤波的代表性算法SIR算
法和EPF算法, 对他们三者的分时恒定状态估计
情况进行比较, 如图 4所示.

↼x
↽

↼x
↽

0 10 20 30 40 50
-30

-20
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10

SIR

SPSTPF

0 10 20 30 40

(b)

(a)

50
0

5

10

15

t/s

t/s

EPF

SPSTPF

图 4 状态估计结果比较图 (a) SPSTPF与 SIR; (b)
SPSTPF与EPF

图 4直观地展示了SPSTPF在估计突变状态
时, 相对于SIR和EPF的强跟踪能力. 从图 4 (a)可
见, SIR由于严重的粒子耗尽问题而不能准确地对
状态进行估计; 从图 4 (b)可见, EPF由于EKF本
身的缺陷, 而丧失了对突变状态的跟踪能力.

110505-7

http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn


物 理 学 报 Acta Phys. Sin. Vol. 63, No. 11 (2014) 110505

表 2 均方根误差

次数 1 2 3 4 5 6 7 8 9 10

RMSESIR 2.2779 0.9923 6.4337 6.2647 7.3551 4.182 9.3257 2.0658 18.571 4.2354

RMSEEPF 1.3563 1.793 1.8748 1.9552 1.8025 1.8253 1.8232 1.8172 1.8122 1.8059

RMSESPSTPF 0.6241 0.6182 0.8703 0.7975 0.8032 0.7035 0.8573 0.703 0.5684 0.5499

RMSESIR 均值 = 6.1704, RMSESIR 方差 = 23.1722, RMSEEPF 均值 = 1.7866, RMSEEPF 方差 = 0.0226,
RMSESPSTPF 均值 = 0.7095, RMSESPSTPF 方差 = 0.0125.

计算精度是衡量算法有效性的一个重要指标,
一般使用均方根误差 (RMSE)来度量粒子滤波算
法的误差, 单次运行的RMSE通过下式计算

RMSE =

√√√√ 1

N

N∑
K=1

(xk − x∗
k)

2
. (46)

上式中N为迭代步数, xk和x∗
k分别是第k步状态

的真实值与估计值. 为了验证SPSTPF的计算精
度, 分别对SIR, EPF和SPSTPF运行 10次, 求其
RMSE的均值与方差,以作比较. 表 2中RMSESIR,
RMSEEPF和RMSESPSTPF依次表示SIR, EPF和
SPSTPF算法的均方根误差.

由表 2可见, 在均方根误差RMSE的均值方
面, RMSESIR的均值约为RMSESPSTPF 均值的 9
倍, RMSEEPF的均值约为RMSESPSTPF均值的 3
倍; 而在RMSE的方差方面, RMSESIR 方差约为

RMSESPSTPF方差的 1854倍, RMSEEPF方差约为

RMSESPSTPF方差的2倍. 可见SPSTPF在估计精
度方面相对于SIR和EPF有明显的提高, 且性能
稳定.

6 结 论

SPSTPF算法是针对EPF和SIR不能跟踪突
变状态以及STPF的退化问题而提出的. 通过将随
机摄动再采样方法引入STPF, 以STF更新粒子.
当出现退化问题时, 采用随机摄动再采样方法进行
再采样, 形成新的样本集, 旨在解决退化问题并提
高粒子滤波算法对突变状态的跟踪能力. 此外, 还
通过数学方法证明了SPSTPF算法是强跟踪算法.

粒子滤波标准验证模型的仿真结果显示, SP-
STPF算法有效解决了STPF的退化问题, 提高了
算法的跟踪能力; 分时恒定系统的仿真结果表明,
SPSTPF算法在估计突变状态方面的计算精度相
对于SIR和EPF方法有显著提高.

综上所述, 本文提出的SPSTPF算法有效解决
了退化问题, 增加了粒子集的多样性, 且在估计突
变状态方面具有明显的优势.
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Study on stochastic perturbation strong tracking
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Abstract
To solve the degeneracy phenomenon and to improve the ability for tracking the breaking states are two difficult

problems in the application of particle filter. Sequential important re-sampling can reduce orilliminate degeneracy, but
the sample impoverishment is a secondary result. Extended particle filter can also reduce the degeneracy, but it cannot
track the breaking states. The ability to track the breaking states can be improved by a strong tracking particle filter,
but the degeneracy phenomenon will not be well solved still. A stochastic perturbation strong tracking particle filter is
proposed for solving the above problems, in which a stochastically perturbative re-sampling is introduced into a strong
tracking particle filter. Thus a stochastic perturbation is added to the particle with maximal weight to form some new
particles, and the degenerative particles are displaced by the new particles to solve the degeneracy phenomenon and
so the sample impoverishment improves the diversity of the samples. The ability of the proposed algorithm to track
breaking states is also improved, and the feasibility and validity of the proposed algorithm are demonstrated by the
simulation results of the standard validation model and the system with constants in different periods of time.

Keywords: particle filter, degeneracy phenomenon, stochastic perturbation, strong tracking filter
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