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Abstract

Multiscale shock technique (MSST) has been shown to accurately reproduce the thermodynamic and chemical
reaction paths throughout the shock wave fronts and reaction zone of shock initiation of energetic materials. A 1:1
cocrystal of hexanitrohexaazaisowurtzitane/trinitrotoluene (CL20/TNT) is shocked along the <110> orientations under
the conditions of shock velocities lying in the range 6—10 km-s~* in ReaxFF molecular dynamics simulations. Products
recognition analysis leads to reactions occurring with shock velocities of 7 km-s~! or stronger, and the shock initiation
pressure is 24.56 GPa obtained from the conservation of Rankine-Hugoniot relation. Comparisons of the relationships
are carried out between shock velocity and particle velocity, shock velocities and elastic-plastic transition. During shock
initiation with the shock velocities lying in the range 7—8 km-s~!, the shocked systems correspond to an elastic-plastic
deformation, primary chemical reactions, and secondary chemical reactions. And the elastic-plastic transition coincides
with the chemical reaction at higher shock velocity (= 9 krn-s_l)7 the cocrystal material response is over-driven, and all
the thermodynamic properties show steep gradients, the compressed material by the shock wave steps into the plastic

region, and a large number of carbon atoms appear in the early stage of over-driven shock initiation.

Keywords: multiscale shock technique, ReaxFF molecular dynamics, shock initiation, cocrystal
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