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Fig. 1. (a) and (c) are the bulk band structures of two-dimensional (2D) photonic crystals (PCs) in square

and triangular lattices, respectively; (b) and (d) are the three-dimensional band structures near the Dirac-

like point at k = 0 for (a) and (c), respectively. The radii of the cylinders in square and triangular lattices

are R = 0.2a and R’ = 0.184a, respectively. a is the lattice constant.
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Fig. 2. The band structures of two-dimensional photonic crystals in a square lattice with different radii

of the cylinders at a fixed relative permittivity ¢ = 12.5. (a), (b) and (c) are for R = 0.19a, R = 0.2aq,

R = 0.21a, respectively.
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Fig. 3. (a) The band structure of a two-dimensional photonic crystal in a square lattice with e = 12.5, R = 0.2a;

(b) the effective permittivity and effective permeability of the 2D PC as a function of frequency near the Dirac-

like point; (c)—(e) the eigen modes near the Dirac-like point with a small k along I'X direction. The color

denotes the distribution of the electric field. The arrow denotes the magnetic field.
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Fig. 4. The band structure of 3 D dielectric sphere
photonic crystal in a simple cubic lattice. The relative
permittivity and the radius of the sphere are ¢ = 12,
R = 0.3a The lattice constant is a.
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Fig. 5. (a) The band structure of spheres arranged in a sim-
ple cubic lattice, the unit cell consists of a core-shell struc-
ture, the core is made of perfect electric conductor with radius
R; = 0.102a, the dielectric shell is € = 12, Ry = 0.3a, here, a
is the lattice constant; (b) the effective permittivity and effec-
tive permeability of the 3 D PC as a function of frequency; (c),
(d) the eigen modes at the Dirac-like point, the arrows denote
the directions of the electric fields, (c) represents a magnetic
dipole along the z-direction, (d) represents an electric dipole

along the z-direction.
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Fig. 6. (a) The schematic picture for the interface along the y-direction formed by two semi-infinite two-dimensional

photonic crystals, the relative permittivities and radii of the cylinders in the left and right PCs are €1, R1 and €2, R2,
respectively; (b) the bulk band structures for two PCs with €1 = 10, Ry = 0.205a(blue color) and €2 = 12.5, Ry =
0.22a(red color); (c) the projected band structures of the two PCs, blue and red colors denote the left and right

PCs, respectively. The two green lines represent bands of interface states.
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color marks the propagating band region; (c), (d) the reduced 1D band structures for two PCs at a fixed
ky = 0.61/a, the Zak phases of the bands are labeled with green colored numbers.
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Abstract

Dirac cones and Dirac points are found at the K (K') points in the Brillouin zones of electronic and classical
waves systems with hexagonal or triangular lattices. Accompanying the conical dispersions, there are many intriguing
phenomena including quantum Hall effect, Zitterbewegung and Klein tunneling. Such Dirac cones at the Brillouin zone
boundary are the consequences of the lattice symmetry and time reversal symmetry. Conical dispersions are difficult
to form in the zone center because of time reversal symmetry, which generally requires the band dispersions to be
quadratic at k = 0. However, the conical dispersions with a triply degenerate state at k = 0 can be realized in two
dimensional (2D) photonic crystal (PC) using accidental degeneracy. The triply degenerate state consists of two linear
bands that generate Dirac cones and an additional flat band intersecting at the Dirac point. If the triply degenerate
state is derived from the monopolar and dipolar excitations, effective medium theory can relate this 2D PC to a double
zero-refractive-index material with effective permittivity and permeability equal to zero simultaneously. There is hence a
subtle relationship between two seemingly unrelated concepts: Dirac-like cone and zero-refractive index. The all-dielectric
“double zero”-refractive-index material has advantage over metallic zero-index metamaterials which are usually poorly
impedance matched to the background and are lossy in high frequencies. The Dirac-like cone zero-index materials have
impedances that can tune to match the background material and the loss is small as the system has an all-dielectric
construction, enabling the possibility of realizing zero refractive index in optical frequencies. The realization of Dirac-like
cones at k = 0 can be extended from the electromagnetic wave system to acoustic and elastic wave systems and effective
medium theory can also be applied to relate these systems to zero-index materials. The concept of Dirac/Dirac-like
cone is intrinsically 2D. However, using accidental degeneracy and special symmetries, the concept of Dirac-like point
can be extended from two to three dimensions in electromagnetic and acoustic waves. Effective medium theory is also
applicable to these systems, and these systems can be related to isotropic media with effectively zero refractive indices.
One interesting implication of Dirac-like cones in 2D PC is the existence of robust interface states. The existence of
interface states is not a trivial problem and there is usually no assurance that localized state can be found at the boundary
of photonic or phononic crystal. In order to create an interface state, one usually needs to decorate the interface with
strong perturbations. Recently, it is found that interface state can always be found at the boundary separating two
semi-infinite PCs which have their system parameters slightly perturbed from the Dirac-like cone formation condition.
The assured existence of interface states in such a system can be explained by the sign of the surface impedance of the
PCs on either side of the boundary which can be derived using a layer-by-layer multiple scattering theory. In a deeper
level, the existence of the interface state can be accounted for by the geometric properties of the bulk band. It turns
out that the geometric phases of the bulk band determine the surface impedance within the frequency range of the band
gap. The geometric property of the momentum space can hence be used to explain the existence of interface states in

real space through a bulk-interface correspondence.
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