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6) T 5 45 5 A AL 25 PR o F0 AR AR DT B B BT
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HH, 258 T—d+1IEN Bl (r) A1 BEL(r).

Bio(r) = o > fu=1,

u

if D[XdE(tl)a XdE(t2)] <r;
u=0, otherwise}

1<ty <T—d, ty#t, (10)

et

u

BgT(T) =

if D[XdT(tl), XdT(tQ)] <,
u =0, otherwise}
1<t <T—d, ta#t,.  (11)

B3R B (r) A B (r) (1) B (8] ¢ °F ¥ {H BE(r) 1
B&(r).

T—d

BY(r) = 7t Y Bl(r), (12
o

Bi(r) = o5 . Bh().  (13)

SRIG, SR Y d+1 4E K B 45 2 AR PR A
BRUCHEC KL AL (r), AL (r), B FLB AP ¥ {E AL (r)

A A%(r):
AflE(r) =
Z { u =1, if D[X(d+1)E(t1),X(d+1)E(t2>] < }

” u = 0, otherwise

T—d—1
1<ty <T—d, to#t, (14)
AgT(T) =
5 { w=1, i DX (gs1yr(ts), Xasayr(ts)] < 73 }

“ u = 0, otherwise

T—-d-1
1<ty KT —d, ty#ty, (15)

AYr) = s S Al ), (16)

AL (r) = T4 > Af(r). (17)

=1
7) i+ 5 d A 1A F 5 B (r), B (r) 5 d+1 SRt
FP5) AL (r), A4 (r) FIARAUERE, BOFEANE He(d, r)
%[I HT(d,’I“).

Hg(d,r) = lim {~In[Ag(r)/Bg(r)]},  (18)
Hy(d,r) = lim {~In[A%(r)/By(r)]}.  (19)

FeOR EEA B, BEASRS T 5 7o v P A RS Y
Fe B AUTEBRAC 7 51, DR T DA A PR e A i £
THE R TR I [8] Fr 71 AR AR UL

3 FFR "7 I\ 4052 3

YAIE FFRr I 2 1% SNR R 6 PLV 43 b
TI R R, AT T 22 A S B o T fi R
55 AR, AT T AN A FFR 525,
SEI6 147 35 [ Boston University i) Auditory Neu-

roscience Laboratory 5& .

3.1 Zik#E

SIS 1A 16 4 2 W H, F 2138,
Ha4 ot LR 2miE204 2R E, FkN
2030 %, H 10 % L. B 12l 7E s
BOAHEAT 7 0CH- 4l Wy Sy A K, 90l 2R
250—8000 Hz fFAfe. MR4h KN, /& ANE T
TR 32 0 S B T ) BB #BE T 15 dB, H
BT X B2 B4 W SR A0 5, BT 2R T
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NIEFR. ZREZE T AL, 5%
WH ST TR SR AR .

3.2 LRI AEIR

SIEBS T P AR & B MATLAB B 264 it
T4t ARSI T LA 25 kHz (R RAE SR ). 9256 1 1)
S e A, M8 AN SRR T 14l 1 sine A
24l (100, -- -, 800 Hz) 4%, L4504 100 Hz. %
A RO oS R, M SRR I
T NS TR S (40 3000 Hz ki), 17 M
EE SNR N 410 dB. SE5 2 BIE AN R E &5,
FEANYY A 100 Hz, BN E S & B E A cosine M
gl H ok, (HEAFEAFRFEE. £—1NME68
£3.57 100 Hz FHT 5 M8 (IR4: 100, - - -, 500 Hz),
XPIEHE W J132 & T E, Wi s i SR 25 5 7 1%
BN, AN EATEE 6 101W (T
Az 600, ---, 1000 Hz), W75t 4h & #0245 fE 5 HHX 1
AR Ry, BEEAEAEEE12-161E
P (L 1200, -- -, 1600 Hz), WF it 4hE 104 R 55
X I A VSR ) o e i 22 . BN A
FEAER AT 20 M (P4 100, - - -, 2000 Hz).

SIS 1 AISEES 2 (R A B KN 170 ms, £
$510 ms cos? T bR BUH TH B TR 7S R ) 3 OR RF
80 dB A 5B /K -, A ) U E- % . BB A P YRR
(P ¥ [EB% 4 770 (£ 100) ms, FANREE 2 8]
30 B 28 T PRIE S HEOE SR A5 5 2 B L
FEAL. 75 2 I AR B AR P 1 7 s i, B — 223
B B PE, T 5 — 2R U

3.3 ZWRFSHMBEGE

T 1)PC L, s g s A DASE i) 26 o
fioh 7 A A B RO B 2) PR EE BT (Sys-
tem 3 Real-time Signal Processing Systems, Tucker
Davis Technologies, Gainesville, FL), %l 75 & 1%
it 2, 3) ANB X H -2 (ER-1, Etymotic, Elk Grove
Village, IL).

18 % K /& BioSemi Active Two System
(BioSemi, Amsterdam, Netherlands), K #f %4
16.384 kHz. 15 Ag-AgCl 3k {7 Hi# #% I8 Interna-
tional 10-20 System of Electrode Placement #5
JE. FFR MWBEUE Cz BIL K Tk, 23555
kBT HEE A AR, BRAh, F AN F AR

M BRSNS, oA A i & B s/
20 mV.

3.4 SLiEFF

ek B AR CE G, % BN R
(single-walled Eckel C-14 booth, Cambridge, MA),
FARER T LG —#A RO B, HANE
R TERNS. S5 1, BEALZ R SRR 1 H SR, Sk
W A 92 he SEES 1A 7 Y L 2 i M g
PREBE R 4 9 R 4000 YR KR 43y 8 AN R,
FEAMEH 1000 MRS, SLI N2 FRIA B4R, %
M. R, IR ORI R A
WU Z R BEAT, AT A 2000 4™ 5 5 A4 30 95
(2FPARAE = 2PPERET). SIG 2, BEAL 2R EAE—
RZWERHAN LR, AL EL 1 h N
AN S8 73 08 I DY A AN [ B0 75 5 (I, A,
T, BEAR), A P RO 2R A ST T B 2000
R, IEARREAZ B AT

4 SIS R 50T
4.1 BHEHETEH FFR B PLV LIS 4

Kl 18R 16 £7 52338 1°F3 FFRe 1 PLV, BA
J PLV 22 3 52688 NEL. B 2 2 AESCHR [22]
177 15 FE A EH SR8 16 46752 15 - 35 FFRe 1
e 3 SNR, LA S 7 1) 5t 38 A 30 ) =2 8 N3
BARE B SNR 4 e R B E SE FFR W B2, (=
5T, BB SR BN, FFRe B PLV (A S\ $ %
Tl A 1S SNR A RS, i, PLV LG 5 i 5
HHIT 581 FFRc.

ARG [U9ES578 s
0.20
0.15
Z
& 0.10 13 125 L1 11
;10 8 55 8 810 5 9
0.05 o2 S i NN s
13
k

200 400 600 800 200 400 600 800
HZEN A / Ha

1 FFRc M5 PLV 5254 % A3
Fig. 1. Mean PLVs of FFR¢ and the number of sub-
jects with significant efficient FFR(.
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15

12
5 11 11 19

L /dB
-
I

e

0

=)
—
[}

200 400 600 800 200 400 600 800
PN R / Ha

K2 FFRc KPR SNR K &E A 8K
Fig. 2. Mean amplitude spectrum SNR of FFR¢ and
the number of subjects with significant efficient FFR .

4.2 HAREGLIGZE

K 3 (a) A& SZEG 1A N 100, - -+, 800 Hz 1)
BEE, HUARE0.2, 4502 2—11 1 FFRg
MFFRc MFEARS. BEUS A2 A

1.8

o {U%%
— - A WIS

(2)

>

1.6

FEAR

5, LR REAR A, TR 3 (b) S 2 S
N gr(t) F45 (600, ---, 1100 Hz), B4 (1200, -- -,
1600 Hz) F1 5545 (100, -- -, 2000 Hz), AHALL 2 R B
0.2, 4402 2 1 20 73218 % FFRg M FFRc FIFEA
chﬁ Mg RoR R, b R 5 R R 5 25 AN
BTSN A AE, T F RN AL

B 3T I 1) BARI N4 42 S B FFRE A
FFR [ A 405 328 8 ek /)N, AHL 2 25 > 4 SO0 7 1)
FFRc KIFEAR 8 2 2 & T FFRg FIFEARS, 256
1 Hp P REAS RS AE S 4E R0 22 7K P p < 0.05;
2) S 2 HHAERCN 2 B, T RIS YR AR 5 T
S HE, FFRc FIREA 3 538 50 T FFRe HIREAR
(43, p < 0.001; S, p < 0.001; FEA, p < 0.01).
EBJH:T %1, FFRg 1 FFRc FE A8 K I FFR & X

T HITRAE LSy TFS MR, T AE A N FFRE

)”JJzEXﬂ“F' B 118 38 B o3 . 255 FR T
1.6} (b) + e
= I
1.2
b T
ﬁ I —
o 1.0 | T T
=) x | | |
I 0.8 x ‘
= I
% o6t L ! '
& | | |
Lo L
0.4 o n |
0.2 ** ]
o R sl O B e S

FFRg FFRc

3 ANFELES (a) AFRBIZE (b) I FFRE 5 FFRe MIFEARILLE:  ** p<0.01; *** p <0.001

Fig. 3. Comparison between sample entropies of FFRE and FFR¢ under different dimensions (a)

and frequencies (b); ** p<0.01, *** p <0.001.

4.3 FFRenv S FFRcar BIIER IS X Z

Kl 28 PLV (1) i 150 2 22 1) 18 = i Bl B 3 72,
Jir LA PLV [ IEAE ML 5 A G = #5540, AR
H Pearson’s 2k ' #H 2¢ &2 1R 1E FFRg A1 FFRG H)
B, 145 T2 FR AL (100 Hz).
{ERA3 (200, 300, 400 Hz) Fl & (600, 700, 800 Hz)
=B N FFRy M1 FFR ¢ [ Pearson’s 26 P 40 5%
REr U R E K p. NEIETHE WM, A
FFRg 1 FFRc (1) PLV [A] i 5 2 KT 8 & 1%
REA W TR, RPAH T A
TR EAMANEL H Bonferronif& 1F 15 4H

guit, RAEMEEKFp < 0.05/15 = 0.00333 i
FFRg M FFRc MMM BE. B, (LM
B FFRg M FFRc #AAR G, WEIPIAS 73 2 B A8
S MERIREE R T EHMIES AL, FTLA, A SR
{14 [X. 730, 28 T B St 45 25 4 0 2 1) PLV 5 VA AE —
SEFERE b e T 03 7S 2 BLAR 4 B AL AT TES
X — [

4.4 FEFREEGHLH FFRgFMFFRc

Bl 4 SR T 75 S50 2 (1 DU Rl AS [7] 43 B 6 5 1
& B RRIBCR, Fo b1 20 A7 52 8 & (11 1
PLV (X, FFRg; 4, FFRc). #3545 w]
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Sy HEAR AR 100, - - -, 500 Hz (fK ). AT 23 9% i 40
600, - - -, 1000 Hz(H 45). TT%%J?E%% 1200, - - -,
1600 Hz (& 40)~ 343 v 3 #5356 50 A 0l 5 1%
100, - - -, 2000 Hz (m%ﬁﬁ). SIS 2 R B R WT.

FFRg(Fo) FFRc(Fo)

025 ———— & .

*

0.20 - ‘F I + 1 ]

0.15 - T .

PLV

0.10 - T 1

0.05, o S

e ]

IR Wil i S IR i S
SRR E AR

4 FEPFERIBEAR LIS FFRg 1 FFRe * p < 0.05
Fig. 4. FFRg and FFR¢ at fundamental frequency are
* p<0.05.
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F1 ARFEHB FFRE 5 FFRc RIIER AP
Table 1. Orthogonal and independent characteristics between FFRgand FFR( in different frequency bands.

FFRg FFRc
200—400 600—800 100 200—400 600—800
0.0074 —0.1755 —0.2602 —0.0626 —0.1383
100 p =098 p =065 p =0.62 p =085 p =067
L= 16 L=9 L=6 L=12 L=12
0.6181 —0.2338 —0.5267 0.2047
FFRy 200—400 p = 0.08 p =0.66 p = 0.08 p =021
L=9 L=6 L=12 L=12
—0.2726 —0.7584 —0.3566
600—800 p =0.66 p=0.03 p=0.35
L=5 L=38 L=9
0.5194 0.1801
100 p=0.48 p =078
L=4 L=5
FFRq
0.3582
200—400 p =028
L=11
ZE L RTIR, Fo Ak R T G i . S B R R A B AR PO R (L E 100—2000 Hz B4 305 3) 2

LA B S B, 10 A2 XS TFS (9 9ifis. fEH A0
BRARHITEOLT, Fo Ab H LA IEAS = W02 AN [ i W
"o 38 % ) P Y 0 4% TR A T N, T TES 65K
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SXoF i AT IR P I S I 1 o AN 28 A A 5 TR I
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4.5 BFERIEKLCHFFRy #FFRc

T A T R B TR RS o SR F 2
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0.05940.004 SEM; 500 Hz, 0.07640.008 SEM:;
600—800 Hz, 0.0634:0.006 SEM];
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1) BRALE H AN 100—2000 Hz 585 75 &
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Fig. 5. FFRs at different frequency bands are influ-

enced by frequencies of sound stimuli.
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Abstract

Phase-locking is a physical phenomenon that refers to a system response which is synchronized with a specific
phase of the periodic stimulus. The auditory neural phase-locking plays an important role in revealing the basic neural
mechanism of auditory cognition and improving auditory perception. In the existing auditory researches, psychophysical
and amplitude spectral methods are mainly adopted. However, those two methods cannot differentiate the envelope-
related auditory response from the temporal-fine-structure-related auditory response, and cannot reveal the neural phase-
locking mechanism directly either. In this study, a phase locking value (PLV), based on sample entropy, bootstrapping
and discrete Fourier transform, is proposed for analyzing the temporal-fine-structure-related frequency following response
(FFRt). The proposed PLV is applied to computing neural and physical data. Two electroencephalography experiments
are carried out. Results show that the sample entropy of FFRt’s PLV is significantly greater than that of FFRg’s PLV,
and the two PLVs are orthogonal and independent. Thus, the PLVs of FFRg and FFRt reveal the auditory phase-locking
mechanisms effectively. In addition, the response to fundamental frequency is mainly attributed to the envelope-related
phase locking. And human auditory capability of phase locking to the envelope of the unresolved frequency is superior to
the capability of phase-locking to the envelope of the resolved frequency. Moreover, in the case of missing fundamental
frequency, the distortion product is the mixture of FFRg in various auditory neural paths. Also, FFREg concentrates
at the low harmonic frequencies, while FFR1 concentrates at the mid and high order harmonic frequencies. Therefore,
the auditory neural phase-locking is related to the frequency resolution of sound. In conclusion, the proposed method

overcomes some disadvantages of existing FFR analyses, making it beneficial to exploring auditory neural mechanisms.

Keywords: neural mechanism of audition, phase locking value, sample entropy, frequency following

response
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