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Fig. 1. The radial wave functions of Si 2s2pld orbitals.
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Fig. 2. The total energies of bulk silicon as functions

of lattice constant calculated by different basis sets.
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Fig. 3. The times to construct Hamiltonian matri-
ces, diagonization and total time per electronic step

as functions of system sizes.
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Fig. 4. Comparison of the charge density convergence

using Pulay and Pulay-Kerker mixing methods for a
200 Ti system.

187104-7


http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn

¥ 12 ZF R Acta Phys. Sin.

Vol. 64, No. 18 (2015) 187104
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Fig. 5. The initial charge density errors in MD simu-

lations using different charge extrapolation methods.
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Abstract

With the rapid development of supercomputers and the advances of numerical algorithms, nowadays it is possible
to study the electronic, structural and dynamical properties of complicated physical systems containing thousands of
atoms using density functional theory (DFT). The numerical atomic orbitals are ideal basis sets for large-scale DFT
calculations in terms of their small base size and localized characteristic, and can be mostly easily combined with linear
scaling methods. Here we introduce a first-principles simulation package “Atomic-orbital Based Ab-initio Computation
at UStc (ABACUS)”, developed at the Key Laboratory of Quantum Information, University of Science and Technology
of China. This package provides a useful tool to study the electronic, structural and molecular dynamic properties of
systems containing up to 1000 atoms. In this paper, we introduce briefly the main algorithms used in the package,
including construction of the atomic orbital bases, construction of the Kohn-Sham Hamiltonian in the atomic basis sets,
and some details of solving Kohn-Sham equations, including charge mixing, charge extrapolation, smearing etc. We then
give some examples calculated using ABACUS: 1) the energy orders of B20 clusters; 2) the structure of bulk Ti with
vacancies; 3) the density of states of a model protein; 4) the structure of a piece of DNA containing 12 base pairs, 788
atoms. All results show that the results obtained by ABACUS are in good agreement with either experimental results

or results calculated using plane wave basis.

Keywords: density functional theory, numerical atomic basis, first-principles package
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