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第一性原理的广义梯度近似+U方法的纤锌矿

Zn1−xMgxO极化特性与Zn0.75Mg0.25O/ZnO
界面能带偏差研究∗

吴孔平1)† 齐剑1) 彭波1) 汤琨2) 叶建东2) 朱顺明2) 顾书林2)‡

1)(安徽理工大学电气与信息工程学院, 淮南 232001)

2)(南京大学电子科学与工程学院, 微结构国家实验室, 南京 210093)

( 2015年 3月 8日收到; 2015年 5月 21日收到修改稿 )

在纤锌矿结构Zn1−xMgxO/ZnO异质结构中发现了高迁移率的二维电子气 (2DEG), 2DEG 的产生
很可能是由于界面上存在不连续极化, 而且 2DEG通常也被认为是由极化电荷产生的结果. 为了探
索 2DEG的形成机理及其产生的根源, 研究Zn1−xMgxO合金的极化特性与ZnO/Zn1−xMgxO超晶格的
能带排列是非常必要的. 基于第一性原理广义梯度近似+U方法研究了Zn1−xMgxO合金的自发极
化随Mg组分 x的变化关系, 其中极化特性的计算采用Berry-phase方法. 由于ZnO与Zn1−xMgxO 面
内晶格参数大小相当, ZnO 与Zn1−xMgxO 的界面匹配度优良, 所以ZnO/Zn1−xMgxO 超晶格模型较
容易建立. 计算了Mg0.25Zn0.75O/ZnO超晶格静电势的面内平均及其沿着Z(0001)方向上的宏观平均.
(5+3)Mg0.25Zn0.75O/ZnO超晶格拥有较大的尺寸, 确保远离界面的Mg0.25Zn0.75O与ZnO区域与块体计算
情况一致. 除此之外, 基于宏观平均为能量参考, 计算得到Mg0.25Zn0.75O/ZnO超晶格界面处价带偏差为
0.26 eV, 并且导带偏差与价带偏差的比值处于合理区间, 这与近来实验上报道的结果相符. 除了ZnO在
[0001]方向上产生自发极化外, 由于在ZnO中引入Mg杂质会产生应变应力, 导致MgxZn1−xO层产生额外的
极化值. 这样必然会在Mg0.25Zn0.75O/Zn界面处产生非连续极化现象, 促使单极性电荷在界面处积累, 从而
在Mg0.25Zn0.75O/Zn超晶格中产生内在电场. 此外, 计算了Mg0.25Zn0.75O/ZnO超晶格的能带排列, 由于价
带偏差∆EV = 0.26 eV与导带偏差∆EC = 0.33 eV, 表明能带遵循 I型排列. Mg0.25Zn0.75O/ZnO 的这种能
带排列方式足以让电子与空穴在势阱中产生禁闭作用. 2DEG在电子学与光电子学领域都有重要应用, 本文
的研究结果将对Mg0.25Zn0.75O/ZnO 界面 2DEG的设计与优化中起到重要作用, 并且可以作为研究其他Mg
组分的MgxZn1−xO/ZnO超晶格界面电子气特性的参考依据.

关键词: 氧化镁锌, 自发极化, 静电势平均, 能带偏差
PACS: 73.20.–r, 71.15.Mb, 73.40.Gk, 68.65.Cd DOI: 10.7498/aps.64.187304

1 引 言

成熟的外延生长突变氧化物界面技术使

得氧化物电子学成为一个崭新的研究领域 [1,2].

例如, 实验上基于分子束外延方法提出了在
Zn1−xMgxO/ZnO异质结构中产生了二维电子
气 [3−5]. 然而, 近期我们采用金属有机化学气相
沉积技术也得到了Zn1−xMgxO/ZnO异质结构并
证实二维电子气 (2DEG)的存在 [6−8], 并且在这些
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异质结构中发现了量子霍尔效应, 进一步证明了
这些异质结具有高质量的界面. 已经证实在低温
下该异质结中具有1013 cm−2的电荷浓度以及高达

105 cm2·V−1·s−1的载流子迁移率 [5,6]. 除此之外,
在Zn1−xMgxO/ZnO异质结构中的自旋极化的二
维电子气已有报道 [8], 但铁磁性形成机理仍处于研
究之中.

Zn1−xMgxO/ZnO异质结构系统不仅是二维
电子气令人感兴趣, 而且它还在电子学以及自旋电
子学方面有重要的应用. ZnO是一种多功能过渡
金属氧化物半导体, 具有优越的光电性能, 在电子
和光电子技术上有着广泛的应用. ZnO的带隙为
3.37 eV [9], 并且可以通过引入Mg [10]或者Cd [11]

来调节到更大的带隙, 可用作紫外光电器件上的
透明材料. 由于Zn3d104s2电子具有较高的迁移
率, 使得它非常适合用来制备高电子迁移率晶体
管 [5]. 此外, ZnO可用于制备具有室温铁磁性的
稀磁半导体 (DMS) [12]. 这些因素都表明在室温下
Zn1−xMgxO/ZnO 界面处很可能形成自旋极化的
高迁移率2DEG.

由于密度泛函理论在计算ZnO半导体带隙方
面的不足, 所以Zn1−xMgxO/ZnO界面处 2DEG的
第一原理计算很少见到. 这个界面与其他极性界面
非常不同, 比如钙钛矿LaAlO3/SrTiO3异质结构

就已经有非常详细的研究. 而 III-V 族半导体 (如
GaAs/AlAs, GaN/AlN)中的二维电子气形成机理
通常被认为是来源于调制掺杂, 最近, AlGaN/GaN
以及GaN/AlN超晶格体系也受到广泛关注 [13−15].

与这些材料类似,块体ZnO本身具有较强的自
发极化特性. 由于ZnO与Zn1−xMgxO具有不同的
原子结构和化学键特性, 因此在Zn1−xMgxO/ZnO
体系中缺乏空间反演对称性, 块体ZnO在 [0001]方
向出现自发极化并且在界面两侧具有不同的自发

极化. 这种非连续极化将在异质结界面处产生大量
束缚的界面电荷, 这些电荷会在整个异质结构中产
生一个内在电场. 这种诱发的内在电场将自由载流
子束缚在界面附近从而形成 2DEG. 这种 2DEG的
形成机理非常类似于铁电体极化界面处的禁闭效

应 [16,17].
尽管Zn1−xMgxO/ZnO界面新奇量子现象

正在快速地被人们理解与优化, 然而, 相比
于已经研究几十年的 III族氮化物, 目前对
Zn1−xMgxO/ZnO界面的认识程度远不够深. 目

前, 有关Zn1−xMgxO/ZnO界面的一些重要特性
依然存在广泛争议, 最基本的就是界面处能带偏
差, 包括价带偏差 (∆EV)与导带偏差 (∆EC) [18],
它们不仅是界面处两个重要的基本特征参数,
而且也是针器件进行非自洽数值模拟的输入参

数 [19,20]. 如果根据 “common anion rule” [21,22],
Zn1−xMgxO/ZnO界面的价带偏差应该被忽略不
计. 而Ohtomo等 [23]通过间接的光电子能谱拟合

的方法得到∆EC与∆EV的比值为90 : 10. Janotti
等 [24]通过第一性原理的方法计算了MgO/ZnO界
面处∆EV占总的能带偏差约为 19%. 实验上采
用光电子能谱拟合的方法得到MgO/ZnO 界面处
∆EV在总的能带偏差中约占 60 : 40—70 : 30 [25].
最近, Su等 [26]直接对ZnO/Zn0.85Mg0.15O进行光
电子能谱拟合, 得到界面处∆EC与∆EV的比值为

60 : 40.
本文基于密度泛函理论的第一性原理广义

梯度近似 (GGA+U)方法研究Zn1−xMgxO合金
的晶格参数特性与极化特性随着Mg组分的变
化规律, 同时报道了沿 (0001)方向纤锌矿结构的
(5+3)ZnO/Zn0.75Mg0.25O超晶格结构界面处∆EC

与∆EV的比值大小, 计算结果与现有的实验结果
符合得较好.

2 计算模型和方法

我们使用Vienna ab initio simulation packag
(VASP)5.3.3程序代码以及采用GGA+U进行所有

的计算, 采用基于平面波赝势方法的密度泛函理
论计算Zn1−xMgxO合金的晶格参数特性和极化特
性. 文中涉及的计算模型都是基于 2 × 2 × 4超晶
胞晶体结构模型, 如图 1所示. Zn 3d与O 2p电子
分别加U = 11, 9, 计算得到ZnO带隙为 3.37 eV,
与实验值一致 [9]. 用平面波基矢来展开电子波函
数, 截断能量设定为 400 eV, 对布里渊区划分为
5 × 5 × 3进行自动匹配k点用于纤锌矿结构ZnO
的计算, 同样的k点网格也被用于所有纤锌矿结构

的超晶胞计算. 另外, 本文中涉及的极化特性使用
Berry-phase相方法进行计算.

为了确定本征ZnO的晶格参数与极化特性,我
们针对ZnO纤锌矿 (电中性不对称)与闪锌矿 (电中
性对称)两种不同的结构开展密度泛函理论研究.
纤锌矿ZnO极化计算时选取电中性对称的闪锌矿
ZnO作为零极化参考点. 对于纤锌矿结构的ZnO,
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我们获得晶格常数a = 3.201 Å, c = 5.172 Å 以
及u = 0.3789. 这些参数比实验值略微小了一
点 (a = 3.258 Å, c = 5.220 Å 以及u = 0.382).
为了观察Mg对ZnO极化的影响, 我们计算了本
征ZnO的自发极化约为−0.0334 C/m2, 压电系数
e31 = −0.651 C/m2和 e33 = 1.278 C/m2, 这与Wu
等 [27]的计算结果较为一致.

O

A

B

C

Mg

ZnO
Zn0.75Mg0.25O

Z(0001)

Zn

图 1 (网刊彩色) 纤锌矿结构的 (5+3) Zn0.75Mg0.25-
O/ZnO超晶格晶体结构
Fig. 1. (color online) Wurtzite crystal structure of a
(5 + 3) Zn0.75Mg0.25O/ZnO superlattice.

3 结果与讨论

3.1 晶体结构参数

对各平衡态下的晶格参数 a与 c的大小

进行了计算. 由于Zn1−xMgxO/ZnO结构中的
Zn1−xMgxO合金在ZnO衬底上做外延, 所以固定
了晶格参数a与 b, Mg的引入必将在Zn1−xMgxO
合金中产生应力, 晶格参数 c与Mg组分的变化关
系揭示了应力对结构特性影响的微观机理. 图 2中
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⊳
A
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图 2 固定和不固定晶格参数 a与 b时 Zn1−xMgxO合金
的晶格常数 c与Mg组分的依赖关系
Fig. 2. Lattice constant c of Zn1−xMgxO alloys are
dependant on Mg composition whether a and b are
fixed.

显示 c与Mg组分的变化关系几乎是线性正比例函
数关系. 然而, 当不固定平面内晶格参数a与 b, 进
行几何结构完全弛豫优化计算时, 结果表明晶格参
数 c随着Mg 组分的增加而减小.

3.2 Zn1−xMgxO合金的极化特性

对于Zn1−xMgxO合金的自发极化的计算主
要包括两个方面: 一方面固定ZnO衬底晶格参
数a引入应力作用; 另一方面不固定晶格参数使
得Zn1−xMgxO合金的几何结构完全弛豫. 计算
结果如图 3所示. 从图 3 中可以看出, 对不同
Mg组分Zn1−xMgxO合金的极化值可以通过一
次方程P (x) = P (ZnO)+Kx进行线性拟合, 在
固定晶格参数 a情况下, 一次方程拟合参数为
Kfix = 0.028 C/m2; 不固定晶格参数 a 的情况

下, 一次方程拟合参数为Kfree = −0.061 C/m2.
结果表明: 面内参数是否固定, Zn1−xMgxO合金
的自发极化变化趋势完全不同. 这也是为什么在
Zn1−xMgxO/ZnO异质结界面二维电子气的实验
研究中, 晶格参数一直都备受关注的重要原因.

0 0.07 0.14 0.21 0.28 0.35
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-0.060

-0.055

-0.050

-0.045

-0.040

-0.035

-0.030

-0.025

/
C
Sm

-
2

a b

a b

图 3 (网刊彩色) 固定与不固定晶格参数 a与 b时

Zn1−xMgxO合金极化与Mg组分的依赖关系
Fig. 3. (color online) Polarization of Zn1−xMgxO al-
loys are dependant on Mg composition whether a and
b are fixed.

另 外, 在 几 何 结 构 完 全 弛 豫 情 况 下,
Zn1−xMgxO合金自发极化的绝对值随着Mg组分
的增加而增加, 而在固定晶格参数a情况下, 该绝
对值随着Mg组分的增加而减小. 这种情况非常类
似图 2中晶格参数 c的变化. 因此, 我们认为晶格
参数 c在Zn1−xMgxO合金自发极化的计算中起着
重要作用.

为了更详细地研究应力对Zn1−xMgxO合金极
化值的影响, 我们定义∆Ptot为Zn1−xMgxO/ZnO
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异质结构与ZnO的极化值差, 并且把这个极化值
差∆Ptot分为三个部分: 电子极化∆Pelec、离子极

化∆Pion 以及压电极化∆Ppiezo. 首先, 我们建立
Zn1−xMgxO/ZnO异质结构, 该结构中晶格参数
a, c以及内坐标u都与本征ZnO一样, 定义此时的
Zn1−xMgxO/ZnO异质结构电子极化与本征ZnO
电子极化的差为∆Pelec. 接着仅对Zn1−xMgxO 超
晶胞内坐标u弛豫优化, 也就是让Zn1−xMgxO超
晶胞结构中晶格参数a和 c跟本征ZnO的a和 c一

样, 通过内坐标u弛豫优化来实现离子极化∆Pion;
最后,对晶格参数a, c以及内坐标u弛豫优化,此时
极化的改变对应压电极化∆Ppiezo. 因此, 总极化值
差就可以写成∆Ptot = ∆Pelec +∆Pion +∆Ppiezo.
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图 4 各个极化分量的大小随Mg组分变化关系
Fig. 4. Magnitude of each polarization component is
dependant on Mg composition.

图 4显示了各个极化分量的大小随Mg组分
变化的情况, 相比本征ZnO的极化值P (ZnO) =

−0.0334 C/m2, 不同Mg组分下的Zn1−xMgxO合

金极化值都有明显改变. 首先, 电子极化绝对值
很小且变化程度也是最小的, 在不同Mg组分的
Zn1−xMgxO合金中, 电子极化几乎没有多少改变,
对总极化贡献很小. 其次, 尽管离子极化绝对值是
电子极化绝对值的 2—3倍, 并且随着Mg组分的增
加极化绝对值也越来越大, 但对总极化的贡献也不
大. 显然, 这些分量中最大的极化贡献是由于应力
弛豫而产生的压电效应, 大约是离子极化的 5—10
倍, 表明在考虑应力作用时压电极化贡献同样占主
要部分.

3.3 能带偏差的计算

构建了 (5+3)Mg0.25Zn0.75O/ZnO超晶格结
构, 如图 1所示, Mg0.25Zn0.75O的面内晶格参数
按照本征ZnO的晶格参数设置. 计算了当x = 0.25

时的界面能量偏差, 这主要是因为在该浓度附近有
大量的实验研究结果可以参考 [27−29]. 界面能量偏
差采用 “bulk plus lineup” 方法来进行计算, 根据
van de Walle等 [30]提出的方法,把宏观平均静电势
能作为能带排列的参考能量. 首先分别计算了块体
ZnO与Mg0.25Zn0.75O的价带位置相对于宏观平均
静电势的位置, 得出它们的差值约为 0.09 eV. 随后
计算 (5+3)Mg0.25Zn0.75O/ZnO超晶格结构沿 c方

向的宏观平均静电势能 (虚线)与面内平均 (实线),
绘于图 5 (a)中, 两宏观平均静电势差值∆V 约为

0.17 eV, 我们计算的价带偏差为0.26 eV. 以宏观平
均静电势能的排列为参考, 根据禁带宽度, 可以确
定导带的位置排列.
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图 5 (a)晶面振荡特性的静电势分布及其沿着Z(0001) 方向上的宏观平均值; (b) 以宏观平均值为参考,
Mg0.25Zn0.75O/ZnO界面附近的能带排列示意图
Fig. 5. (a) The planar electrostatic potential exhibits lattice plane oscillations, which are filtered out by
macroscopic average along Z(0001) direction; (b) the energy band alignment of Mg0.25Zn0.75O/ZnO interface
are shown with respect to the macroscopic average electrostatic potentials.
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尽管我们在计算中采用了U值修正, 第一性
原理计算的Mg0.25Zn0.75O带隙值依然偏小, 必
须采用实验带隙来计算∆EC, ∆EC可以由总的

能带偏移 (∆Eg)减去∆EV计算得到. 根据实验
结果 [31], 总的∆Eg为 0.59 eV, 使用这个值得到
∆EC为 0.33 eV. 根据上述能量关系, 可以很直
接地将能带排列方式绘于图 5 (b)中, 该图显示
Mg0.25Zn0.75O/ZnO界面两侧的能带排列遵守 I型
排列方式.

Mg0.25Zn0.75O/ZnO结 构 的∆EC与∆EV的

比值为 33 : 26, 这一结果与许多实验研究结果
非常接近 [25,26]. 而且, 本文的∆EC与∆EV的比值

大小也在文献报道的结果 (60 : 40—90 : 10) 范围
内 [23−26]. 除此之外, Su等 [26] 采用X射线光电子
能谱直接对ZnO/Mg0.15Zn0.85O异质结构进行测
量, ∆EC和∆EV分别为 0.18 eV和 0.13 eV, ∆EC

与∆EV的比值为 54 : 39, 这与本文的计算结果
非常接近. 但是, 上文所提到的这些计算结果或
者实验结果都与 “common anion rule”预测结果
不一致, “common anion rule” 认为∆EV 在总的

∆Eg中应该占很小一部分, 因为异质结两部分都
拥有相同的O原子, 而价带主要是有O2p组成. 然
而, 对于Mg0.25Zn0.75O, 这个定则不能很好地解释
Mg0.25Zn0.75O/ZnO界面处的能带偏移量, 究其原
因主要是因为增强的O2p—Zn3d杂化耦合将价带
顶推向较大的能量位置.

4 结 论

本文基于密度泛函理论的第一性原理Berry-
phase方法计算了电子极化值并研究了纤锌矿结构
Zn1−xMgxO合金极化的相关特性. 特别地, 我们
研究了不同Mg组分下纤锌矿结构的Zn1−xMgxO
合金的极化特性同Mg组分x之间的关系. 结果
表明: 自发极化同Mg组分x之间大致是线性依赖

关系, 但是不考虑应力情况的线性因子符号与考
虑外延应力的相反. 为了理解这些内部机理, 我
们把极化分为电子极化、晶格失配调制的离子极

化以及应力调制的压电极化三个部分, 并且发现
应力调制的压电极化是最主要的部分. 这些结论
表明, 极化的改变主要由于Mg组分x引起晶格参

数a与 c的改变, 从而产生了压电效应. 此外, 我
们计算得到Mg0.25Zn0.75O/ZnO超晶格晶体结构
界面的∆EC与∆EV 的比值为 33 : 26, 这一结果

与许多实验研究结果非常接近, 界面附近的能带
排列方式遵守 I型排列方式. 研究结果暗示了在
Mg0.25Zn0.75O/ZnO异质结构的界面处存在极化
非连续性与 I型能带排列方式, 这必然会引起电荷
在界面处的积累, 从而产生二维电子气特性.
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Abstract

Two-dimensional (2D) electron gas with high-mobility is found in wurtzite ZnO/Zn(Mg)O heterostructure, which
probably arises from the polarization discontinuity at the ZnO/Zn(Mg)O interface, and the 2D electron gas in the
heterostructure is usually also regarded as resulting from polarization-induced charge. In order to explore both the
formation mechanism and the origin of the 2D electron gas in ZnMgO/ZnO heterostructure, it is necessary to study the
polarization properties of Zn1−xMgxO alloy and energy band alignment of ZnO/Zn1−xMgxO super-lattice.

In this paper, we study the polarization properties of Zn1−xMgxO alloy with different Mg compositions by using
first-principles calculations with GGA+U method, and the polarization properties are calculated according to Berry-
phase method. Owing to the excellent match between the in-plane lattice constants of ZnO and Zn1−xMgxO, the lattice
constants of the ZnO and Zn1−xMgxO interface are similar, ZnO/Zn1−xMgxO super-lattice could be constructed easily.

The planar-averaged electrostatic potential for the Mg0.25Zn0.75O/ZnO super-lattice and the macroscopically av-
eraged potential along Z(0001) direction are calculated. The large size of (5+3) Mg0.25Zn0.75O/ZnO super-lattice
ensures the convergence of potential to its bulk value in the region of the ZnO layer and Mg0.25Zn0.75O layer far from
ZnO/Zn1−xMgxO interface. Besides, the valence band offset at the Mg0.25Zn0.75O/ ZnO interface is calculated to be
0.26 eV based on the macroscopically averaged potential mentioned above, and the ratio of conduction band offset (∆EC)
to valence band offset (∆EV) is in a reasonable range, and this is in substantial agreement with the values reported in
recent experimental results. Because strain induces additional piezoelectric polarization in MgxZn1−xO, which is intro-
duced by Mg dopant, the lack of inversion symmetry and the bulk ZnO induce its spontaneous polarization in the [0001]
direction. The polarization discontinuity at the Mg0.25Zn0.75O/ZnO interface leads to the charge accumulation in the
form of interface monopoles, giving rise to built-in electric fields in the super-lattice. In addition, energy alignment de-
termination of the Mg0.25Zn0.75O/ZnO super-lattice is performed, which shows a type-I band alignment with ∆EV=0.26
eV and ∆EC=0.33 eV. The determination of the band alignment indicates that the Mg0.25Zn0.75O/ZnO super-lattice is
competent to the confining of both electron and hole.

These findings will be useful for designing and optimizing the 2D electron gas at Mg0.25Zn0.75O/ZnO interface,
which can be regarded as an important reference for studying the 2D electron gas at MgxZn1−xO/ ZnO super-lattices
for electronics and optoelectronics applications.

Keywords: MgZnO, spontaneous polarization, electrostatic potential average, band offset
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