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Fig. 1. (color online) The schematic picture of nanotube: (a) Perspective view of the cylindri-

cal nanotube; (b) the cross section. The circles and squares respectively represent magnetic

atoms at the surface shell. The triangles are magnetic atoms constituting the core shell. The

bonds connecting the magnetic atoms represent the nearest-neighbor exchange interactions.
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Fig. 2. (color online) The temperature dependence of the magnetization is presented with some selected

values of crystal field D/J(a) —10.0, (b) —3.87, (c)

on each curve denotes the value of p.

—3.45, (d) —2.99, (e) —2.86, (f) 10.0. The real number
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Fig. 3. (color online) The temperature dependence of the magnetization is presented with p = 0.25, for (a) 0,
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(b) —1.0, (c) —0.5 and (d) 0.5 with several values of D/J.
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Fig. 4. (color online) The temperature dependence of the magnetization is presented with p = 0.85, for (a) 0,
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(b) —1.0, (c) —0.5 and (d) 0.5 with several values of D/J.
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Fig. 5. (color online) The phase diagrams of the nanotube are presented for four typical values of «, (a) 0, (b)

—1.0, (c) —0.5, (d) 0.5. Dashed and solid curves represent the first-order and second-order phase transitions,

respectively. The real number on each curve denotes the value of p.
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Abstract

Recently, the physical properties and applications of the magnetic nanotube have attracted a great deal of theoretical
and experimental attention. The magnetization and phase transition of spin-1 Blume-Capel model on a cylindrical Ising
nanotube with bimodal random crystal fields are investigated by using the effective field theory. Employing numerical
calculations, we obtain the phase diagrams and the magnetization, which depend on the temperature and the parameters
of random crystal fields. Our obtained results are as follows. (i) Changing the probability (p) and the ratio of the crystal
fields (o), the bimodal random crystal fields may describe different doped atoms acting on spins. Especially, for p = 0.5,
choosing a = 0, —1.0, —0.5 and 0.5, the bimodal random crystal fields can respectively degrade four typical distributions
of random crystal fields, i. e., the distribution of diluted crystal fields, the distribution of symmetry staggered crystal
fields, the distribution of non-symmetry staggered crystal fields, and the distribution of same-direction crystal field. (ii)
The system exhibits different magnetic properties and phase transition behaviors in the diluted, staggered and same-
direction crystal field. The diluted and staggered crystal fields may reduce the magnetization of the system, resulting in
the ground state saturation value of magnetization, which is less than 1, while the same-direction crystal fields cannot
result in a similar behavior. (iii) The system shows several phase transition temperatures, i.e., first-order and second-
order phase transitions and reentrant phenomenon as the parameters of bimodal random crystal fields change. The
tricritical point and reentrant phenomenon do exist for certain values of the probability, the negative crystal field and
the ratio of the crystal fields in the system. The relevant experiment is needed to verify the above-mentioned theoretical

results.

Keywords: random crystal field, Blume-Capel model, nanotube, effective field theory

PACS: 75.10.Hk, 75.75.—c, 73.63.Fg DOI: 10.7498 /aps.64.247501

* Project supported by the National Natural Science Foundations of China (Grant Nos. 11275112, 11302118), the Specialized
Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20123705110004), and the Natural Science
Foundations of Shandong Province, China (Grant Nos. ZR2011AMO018, ZR2013AQ015).

1 Corresponding author. E-mail: kongxm@mail.qfnu.edu.cn

247501-8


http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn
http://dx.doi.org/10.7498/aps.64.247501

	1引 言
	2模型与方法
	Fig 1

	3磁化强度与相图
	3.1 磁化强度
	Fig 2
	Fig 3
	Fig 4

	3.2 相 图
	Fig 5


	4结 论
	References
	Abstract

