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Fig. 1. (color online) The energy difference AFE be-
tween ferromagnetic (FM) and nonmagnetic (NM) or
antiferromagnetic (AFM) states of two-bilayer GaN
nanosheets with hydrogenated Ga atoms (H-GaN).
The atomic structures of (a) bare and (b) fully hy-
drogenated two-bilayer GaN nanosheets after geome-
try optimization, (c¢) atomic structure in side views
and (d) NM, FM and AFM states in top view for two-
bilayer H-GaN nanosheets.
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Fig. 2. (color online) (a) Band structure and (b) partial density of states (PDOS) of two-bilayer

H-GaN nanosheet in ferromagnetic state.
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Fig. 3. (color online) For two-bilayer H-GaN
nanosheets in ferromagnetic states, band gaps AEg in
spin-up (solid spheres) and spin-down (hollow spheres)
states as a function of strain e, where the inserts show
the partial band structures for ¢ = +6%, ¢ = —5%,
and € = —6%.
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Fig. 4. (Color online) For two-bilayer H-GaN
nanosheets in ferromagnetic states, binding energy
E}, as a function of strain €, where the inserts show
the atomic structures and bond lengths for ¢ = 0%,
e =+6%, e = —5%, and € = —6%.
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Abstract

In this paper, first-principles calculations based on the density functional theory are performed to investigate the
effects of strain field on the electronic and magnetic properties of two-bilayer gallium nitride (GaN) nanosheets. The
two-bilayer GaN nanosheet without surface modification forms a planar graphitic structure, whereas that with full
hydrogenation for the surface Ga and N atoms adopts the energetically more favorable wurtzite structure. Surface
hydrogenation is proven to be an effective way to induce a transition from indirect to direct band gap. The bare and
fully-hydrogenated GaN nanosheets are nonmagnetic semiconductors. When only one-side Ga or N atoms on the surface
are hydrogenated, the semihydrogenated two-bilayer GaN nanosheets will preserve their initial wurtzite structures. The
two-bilayer GaN nanosheet with one-side N atoms hydrogenated transforms into a nonmagnetic metal, while that with
one-side Ga atoms hydrogenated (H-GaN) is a ferromagnetic semiconductor with band gaps of 3.99 and 0.06 eV in the
spin-up and spin-down states, respectively. We find that the two-bilayer H-GaN nanosheets will maintain ferromagnetic
states under a strain field and the band gaps E in spin-up and spin-down states are a function of strain €. As the tensile
strain is +6%, the band gap in spin-up state reduces to 2.71 eV, and that in spin-down state increases to 0.41 eV for
the two-bilayer H-GaN nanosheets. Under the compressive strain field, the two-bilayer H-GaN nanosheets will show a
transition from semiconducting to half-metallic state under compression of —1%, where the spin-up state remains as a
band gap insulator with band gap of 4.16 eV and the spin-down state is metallic. Then the two-bilayer H-GaN nanosheets
will turn into fully-metallic properties with bands crossing the Fermi level in the spin-up and spin-down states under a
compressive strain of —6%. Moreover, the value of binding energy FE), for the two-bilayer H-GaN nanosheet decreases
(increases) monotonically with increasing compressive (tensile) strain. It is found that although hydrogenation on one-
side Ga atoms of the two-bilayer H-GaN nanosheets is preferred to be under compressive strain, the two-bilayer H-GaN
nanosheets are still the energetically favorable structures. The physical mechanisms of strain field tuning band gaps in
the spin-up and spin-down states for the two-bilayer H-GaN nanosheets are mainly induced by the combined effects of
through-bond and p-p direct interactions. Our results demonstrate that the predicted diverse and tunable electronic
and magnetic properties may lead to the potential application of GaN nanosheets in novel electronic and spintronic

nanodevices.

Keywords: GaN nanosheets, surface modification, strain field, electronic and magnetic properties

PACS: 31.15.es, 61.46.—w, 75.70.Ak, 81.05.Ea DOI: 10.7498/aps.65.023101

* Project supported by the Scientific Research Foundation of the Education Department of Shaanxi Province, China (Grant
No. 2013JK0894), the National College Students’ Training Programs for Innovation and Entrepreneurship of Shaanxi
province, Chine (Grant No. 201510705230), the Youth Science and Technology Innovation Fund of Xi’an Shiyou University,
China (Grant No. 2012BS004), and the Provincial Superior Discipline for Materials Science and Engineering of Xi’an Shiyou
University, China (Grant No. 312010005).

1 Corresponding author. E-mail: mxxiao@xsyu.edu.cn

023101-6


http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn
http://dx.doi.org/10.7498/aps.65.023101

	1引 言
	2计算机模拟方法
	3结果与讨论
	Fig 1
	Fig 2
	Fig 3
	Fig 4


	4结 论
	References
	Abstract

