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Fig. 1. The two structure type of Helmholtz trans-
ducer: (a) Driving at end; (b) driving in middle.
K R AL ST AR AR N o, KEEDYIL, Horp
I > a. WIPEEESAF WU BN C,, R A

M. BIRE TSR W9 o A0 A SN2 T2 E |, S 7
BHHTIEPRA, AR PERRAR, 55— b A D9
JE RS BRIz AR A A B 0 B 2 PR

\4

2a

Sy

2 RIPEEELR K BT T s R AL 15
Fig. 2. The slender cylindrical shell diagram with rigid

wall condition.
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Fig. 3. (a) Infinitesimal element on the cavity wall;

(b) force on the infinitesimal element.
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Fig. 8. (color online) Fluid cavity resonant frequency

changes with the thickness of the wall.
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Table 1. Fluid cavity resonant frequency comparison with different materials.

IR B IR /GPa % /kgm™3  HRGTHEM/Hz  SMERERE/Hz NEERE/He
4 (LY12) 7.15 2790 673 668 957
A4 (TC4) 10.9 4400 740 737 957
TEE (304) 19 8000 820 810 957
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changes with the length of the cavity.
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Abstract

Helmholtz resonators are commonly used as underwater acoustic transducers to transmit low-frequency, great power
acoustic waves at fluid cavity resonant frequency. Therefore, it is an important problem in the study of how to calculate
accurately the fluid cavity resonant frequency of Helmholtz resonator, especially when the Helmholtz resonator is used
in underwater acoustic environment where Helmholtz transducers cannot be designed using the classical air acoustic
Helmholtz resonator theory. The elasticity of the cavity wall has to be considered because it has a strong influence on
the fluid cavity resonant frequency at low frequency band. In this paper, the method of calculating accurately fluid
cavity resonant frequency is researched for low-frequency Helmholtz underwater transducers. A Helmholtz resonator is
a slender cylindrical shell, the boundary condition of its two ends is free: one side is a radiating port, and the other side
is considered as a rigid baffle. Firstly, the fluid cavity resonant frequency of the rigid wall Helmholtz resonator is given,
then the radial mechanical impedance of the slender cylindrical shell is derived based on the wave equations. Elasticity
of the cavity wall is introduced into the acoustic impedance of fluid cavity in the form of additional impedance. Based
on the low-frequency lumped parameter model of the slender cylindrical shell, additional acoustic impedance expression
of elastic cavity wall is derived, complete equivalent circuit diagram of elastic Helmholtz underwater transducers is
developed, taking into account the elasticity of the cavity wall. Based on the equivalent circuit, the accurate fluid cavity
resonant frequency formula has been derived; the formula shows that both the structure size and material characteristics
of the cavity wall have influence on the fluid cavity resonant frequency. The thinner the cavity wall, the lower the fluild
cavity resonant frequency; and the smaller the Young’s modulus of the material, the lower the fluild cavity resonant
frequency. To verify the accuracy of the present theory, several slender cylindrical shell models with different wall
thickness, materials, and wall length are investigated by both elastic theory method and finite element method (using
ANSYS software). These results reveal that the elastic theory results are in excellent agreement with the finite element
simulation results. That means, compared to traditional rigid wall theory results, the results from elastic theory in this
paper is much closer to the real situation. This conclusion can provide a theoretical support for the accurate design of

low-frequency elastic Helmholtz underwater acoustic transducers.

Keywords: elastic Helmholtz resonant cavity, underwater acoustic transducer, fluid cavity resonant

frequency, acoustic impedance
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