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Fig. 1. pb3-Mdm2 oscillator model mediated by
PDCD5.
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Parameter values in model.
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Fig. 2. (color online) (a) Bifurcation diagram of concentration of p53 with respect to Oniama;

(b) period of p53 oscillation versus Tniqma-
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Fig. 3. (color online) The potential landscapes for different Oyiamo in five intervals at the

same noise strength D =1 x 10796,
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FR) fie B THIAT EE, AR b B HG P 0 ) 8 T AR A X
7y, WAL UL RG] DLERX EORAS ) B i 14L,
U, MR O R OR, AR PRIA AR E AR . Bt —
A, AT DUAR 4 R B A SR A AR, R A R e
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B R HB B KA, Umin 72 W0 B IR B RE&E
(1 f /B D90, X641 5 0 R s R AT TR A AT
K4 (b) et 1 35 L2 v T Bl R 7 o A AR 4. 2
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2 SEUE ISR E K p53 R

AN, FRATIRAE R 5 89 8 A 2 A R VF IR
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D =7 x 107, @i B FENL IS o 7 R, 5 il 4h
1000 A 3% 2 A% PR A B f AR 1 (L 1T 5 (a) 0
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Fig. 4. (color online) (a) The potential landscape as Uprame = 0.15, D = 7 x 10~%; (b) barrier

height versus noise strength D as Uyigme = 0.15.
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Fig. 5. Period distribution against noise strength: (a) D = 1 x 107%; (b) D = 7 x 1075; (c) the standard

deviation of period (o) versus noise strength D.
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Abstract

Studying global dynamics and stability of biological network is of importance in order to understand its function
and behavior. In this paper, we consider the p53-Mdm2 oscillator module with PDCD5 as a core part of p53 signaling
pathway after the DNA damage, and explore the dynamics and stability of the tumor suppressor p53. The dynamics
of p53 may decide the cell fate after the DNA damage, while the oscillation of p53 may induce cell cycle arrest and so
promote the repair of DNA, and the high levels of p53 can trigger apoptosis. However, p53 activity may be inhibited by
its negative regulator Mdm2 in some cancer cells, as Mdm?2 is of overexpression due to the increase in Mdm2 production
rate. So we first investigate the effect of Mdm2 production rate on the kinetics of p53 through bifurcation analysis after
the DNA damage. With the increase in Mdm2 production rate, p53 can display a stable steady state, a stable limit
cycle and the coexistence of a stable limit cycle and a stable steady state. Furthermore, the potential landscapes for
oscillation show that the lower concentration of p53 means a stronger stability, whereas those for bistability of the higher
steady state and the oscillatory state illustrate that stability of the higher steady state increases with the increasing
Mdm?2 production rate. In addition, noise strength can greatly affect the stability of p53 oscillations, so we explore the
effect of noise strength on potential landscapes, barrier heights and periods. A smaller noise strength leads to a higher
barrier height associated with more stable limit cycle, and the harmonic oscillation with more uniform period and smaller
variance is helpful to have more stable maintainance. Our results may be useful for understanding regulation of p53

signaling pathway after DNA damage.
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