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网络集聚性对节点中心性指标准确性的影响∗

宋玉萍† 倪静

(上海理工大学管理学院, 上海 200093)

( 2015年 8月 6日收到; 2015年 10月 8日收到修改稿 )

节点中心性指标是从特定角度对网络某一方面的结构特点进行刻画的度量指标, 因此网络拓扑结构的改
变会对节点中心性指标的准确性产生重要影响. 本文利用Holme-Kim模型构建可变集聚系数的无标度网络,
然后采用 Susceptible-Infective-Removal模型进行传播影响力的仿真实验, 接着分析了节点中心性指标在不
同集聚系数的无标度网络中的准确性. 结果表明, 度中心性和介数中心性的准确性在低集聚系数的网络中表
现更好, 特征向量中心性则在高集聚类网络中更准确, 而紧密度中心性的准确性受网络集聚系数的变化影响
较小. 因此当网络的集聚系数较低时, 可选择度或者介数作为中心性指标进行网络节点影响力评价; 反之则
选择紧密度指标或特征向量指标较好, 尤其当网络的集聚系数接近 0.6时特征向量的准确性可以高达到 0.85,
是度量小规模网络的较优选择. 另一方面, 传播过程的感染率越高, 度指标和介数指标越可靠, 紧密度和特征
向量则相反. 最后Autonomous System实证网络的断边重连实验, 进一步验证了网络集聚性的改变会对节点
中心性指标的准确性产生重要影响.

关键词: 网络科学, 节点中心性, 网络结构, 集聚性
PACS: 89.75.Fb, 02.10.Ox DOI: 10.7498/aps.65.028901

1 引 言

随着科学技术的迅猛发展, 社会的网络化现象
越来越明显, 例如社交网络、电商网络、电力网络、
交通网络 [1−3]都与日常生活密不可分, 甚至工业生
产中也可以采用复杂网络解决相关的非线性动力

学问题 [4]. 而且社会活动网络化的推进, 使网络结
构变得越来复杂, 网络的数据规模也日渐庞大 [5].
因此如何在复杂结构和大数据背景下, 准确识别网
络节点中心性从而判断节点的重要程度, 具有重大
科学意义 [6,7].

网络的中心节点是指不仅能影响网络的结构,
如度分布、平均距离、连通性、集聚性、度相关性

等, 同时也能够影响网络的抗毁性、传播、同步、
控制等功能的一些特殊节点 [8]. 目前, 复杂网络
中用来度量节点中心性的指标众多 [9−11]. 经典的
中心性指标包括计算网络中节点的邻居个数的度

中心性 (degree centrality), 度量网络中的节点对其

他节点施加影响的能力的紧密度中心性 (closeness
centrality) [12], 衡量个体社会地位的介数中心性
(betweenness centrality) [13], 将单个节点的影响力
看成是所有其他节点影响力的线性组合的特征向

量中心性 (eigenvector centrality) [14].
近年来, 研究者们为提高经典中心性指标的准

确性并降低其计算复杂度, 对这些中心性方法进
行了改进. 例如提高度、紧密度及介数等指标的准
确性 [15−20], 降低特征向量的计算复杂度 [21], 以及
探索新的度量指标如k核等 [22−27]. 这些新方法都
是为了使复杂网络中节点的中心性指标更准确, 然
而节点中心性指标都是从特定角度对于网络的某

一方面的结构特点进行刻画, 如果目标网络的结
构在该方面特征显著, 对应指标即可得到较好的效
果 [28]. 现实世界的网络统计分析表明, 许多现实网
络具有高集聚性 [29]. 例如生活社交网络中, 朋友之
间往往都相互认识, 这样就成三角形结构. 三角形
结构在实际社会网中代表了一种完全透明的社会
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了解. 因而网络的集聚性高低通过网络中三角形的
数量进行判断.

研究表明, 网络集聚性 (即网络中三角形的数
量)不仅会影响网络的传播、同步、控制等功能,
也对网络节点中心性准确性产生影响. 如Klemm
等 [30]研究发现集群动力学中节点的中心性是由网

络拓扑结构和集群动力学机理共同决定的. Aral
等 [6]研究网络上的用户传播行为时, 发现中心节点
具有高集聚特性. Centola [31]发现传播行为在高集

聚类网络中速度更快. Bond等 [32]以 2010 年美国
大选为实例研究时发现Facebook用户的中心性与
网络结构和传播机理两者都相关. Gao等 [33,34]在

研究非线性动力学行为时, 发现网络的拓扑结构会
影响网络节点的动力学行为, 尤其是网络的集聚系
数能有效刻画网络节点动力学行为的变化.

为了在特定集聚系数网络中探索更合适的中

心性指标, 本文以网络集聚性对中心性指标的准
确性影响研究为目标. 首先采用Holme-Kim (HK)
模型 [35]构建可变集聚系数的无标度网络, 从而
得到不同的集聚性的网络; 然后采用Susceptible-
Infective-Removal (SIR)传播模型 [36]进行仿真得

到节点影响力序列; 再用Kendall’s Tau系数 [37]来

验证不同经典中心性指标与节点影响力序列的一

致性, 分析网络结构对中心性指标的准确性影响;
并通过Autonomous System (AS)网络 [38]的断边

重连实验对结果进行验证; 最后总结当前面临的问
题并展望可能的发展方向.

2 模型回顾

2.1 集聚系数的定义

假设无向网络是由N个节点和M条边所组成

的. 其邻接矩阵表示为A = (aij)N×N , 那么包含节
点 i的三角形数目为

Ei =
1

2

∑
j,k

aijajkaik. (1)

当且仅当节点 i, j, k连边构成三角形时,
aijajkaik = 1, 否则 aijajkaik = 0. 因此网络的
集聚系数 [28]表示为

C =
1

N

N∑
i=1

∑
j,k

aijaikajk∑
j,k

aijajk
, (2)

其中节点 i, j, k两两互不相同. 显然集聚系数的取
值范围为0 6 C 6 1. 当C = 0时, 表示网络中没有
三角形结构; 当C = 1时, 表示网络中任意三个节

点都能构成三角形结构.

2.2 可变集聚系数的无标度网络构建

可变集聚系数的无标度网络是由Holme和
Kim提出的, 简称HK模型 [35]. HK模型融合了
小世界网络的高集聚特性 [29,39]和BA网络的无标
度 [18,40]特点. 为了增加无标度网络的集聚系数,
Holme和Kim在其基础上引入一个被称为三角形
成的新步骤. 具体来说就是: 首先初始化m0个

节点, 并让初始节点构成一个环, 以后每一步加
入一个带有m条边的新节点 i. 新节点 i先从已

存在的节点V 集中随机选择一个节点 j, 以概率
PA = kj

/(∑
v∈V

kv

)
进行优先连接, 其中 kv表

示V 中任意一个节点 v的度. 如果新节点 i与节

点 j成功连接, 接着从节点 j的邻居中随机选择一

个节点 rj , 以概率Pt = Mt/(m− 1)做三角形成连

接, 其中Mt为可变参数. 本文取m0 = 4, m = 3,
N = 10000, Mt ∈ [0, 2]以0.1递增. 如图 1 (b)所示,

 ⊲ ⊲ ⊲ ⊲ ⊲


⊲

⊲

⊲

1 2

-4

-3

-2

-1

0

Mt

C

(b)

P
↼k
↽

k

Mt/⊲

Mt/⊲

Mt/⊲

Mt/⊲

Mt/⊲

Slope=3

(a)

图 1 可变集聚系数的无标度网络的特性 (a) 幂律分布
图; (b)随参数Mt变化的集聚系数

Fig. 1. The characteristics of scale-free networks with
the tunable cluster: (a) Power-law degree distribu-
tions; (b) clustering coefficient with different parame-
ters Mt.
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随着Pt (即Mt)的增大, 网络的集聚系数也会增大,
Pt = 0(即Mt = 0)对应于无标度网络.

本文构建得到的可变网络, 一方面具有经典
无标度网络的幂律分布特性, 如图 1 (a), 随着可
变参数Mt的变化, 均保持斜率为 3的幂律分布现
象 [35,40]; 另一方面又具有小世界网络的高集聚系
数特性 [28], 如图 1 (b), 集聚系数随着可变参数Mt

的增大而增大.

2.3 SIR传播模型

SIR传播模型是复杂网络中节点传播行为的
经典模型 [36,41]. 由N个节点组成的复杂网络中,
每个节点可能处于三种状态 (易感, 感染, 免疫移
出)中的其中一种. 假定节点 j遇到了感染者 i, 如
果节点 j是易感者, 那么它就以概率β被感染成为

新的感染者; 如果节点 j是感染者, 那么它经过Tr

的时间以概率 δ成为免疫移出者; 如果节点 j已经

是免疫移出者, 那么 j遇到 i之后不会再被感染. 假
设网络中节点 i为传染源, 将节点 i的传播值定义

为每次SIR仿真结束时, 网络中状态为感染或免疫
移出的节点数, 独立重复仿真T次, 则节点 i传播影

响力可以表示为

X̄i =
1

T

T∑
t=1

Xi(t), (3)

其中Xi(t)为节点 i在第 t次仿真时的传播值, X̄i为

节点 i在T次仿真中的平均传播值. 节点的传播
值越大表明节点的传播影响力越大, 节点也就越
重要. 于是对网络中的每个节点进行SIR传播仿
真, 最终可以得到网络中节点的传播影响力序列
(X1, X2, · · · , XN ).

3 实验和仿真结果

3.1 HK模型仿真结果分析

本文对构建的可变集聚系数的无标度网

络, 采用SIR模型仿真得到网络中每个节点的
传播影响力, 其中SIR模型参数 δ = 1, Tr = 1,
T = 200, β ∈ [0, 0.3]以 0.02递增. 在可变参

数Mt(t = α)对应的可变网络中, 采用传播
率 β进行仿真, 可以得到对应参数网络的节
点传播影响力序列Rank(Mα,β)(X1, X2, · · · , XN ).
接着根据经典的中心性指标, 依次对Mt(t =

α)的网络计算出其度中心性指标序列De-
gree(Mα)(k1, k2, · · · , kN ), 介数中心性指标序列Be-
tweenness(Mα)(b1, b2, · · · , bN ), 紧密度中心性指标

序列Closeness(Mα)(c1, c2, · · · , cN )和特征向量中

心性指标序列Eigenvector(Mα)(e1, e2, · · · , eN ).
本文采用Kendall’s Tau系数 [31]衡量网络

节点的度、 紧密度、 介数、 特征向量与节

点在 SIR模型中的传播影响力之间的相关
性, 即在可变参数Mt(t = α)对应的可变网

络中, 将序列Rank(Mα,β)(X1, X2, · · · , XN )分别

与中心性指标序列Degree(Mα)(k1, k2, · · · , kN ),
Betweenness(Mα)(b1, b2, · · · , bN ), Closeness(Mα)

(c1, c2, · · · , cN ), Eigenvector(Mα)(e1, e2, · · · , eN )

做相关性分析. 相关性越强表明该指标越能准确度
量节点的传播影响力. Kendall’s Tau系数用来描
述两个序列之间相关性, 可以表示为

τ =

N∑
i=1

N∑
j=1

sgn[(xi − xj)(yi − yj)]

N(N − 1)
, (4)

其中序列X和序列Y 的元素个数都为N , 并且
xi ∈ X, yi ∈ Y . 这里 sgn(x)为符号函数, 当x > 0

时其返回值为 1; 当x < 0时其返回值为−1, 当
x = 0时其返回值为 0. Kendall系数 τ的值越大,
表示两个序列之间的一致性越高, τ最大取值为 1,
表示两个序列顺序完全一致.

根据Kendall’s Tau系数检验. 我们发现不同
集聚系数下中心性指标的准确性不同 (图 2 ), 不同
感染率下中心性指标的准确性也有所不同 (图 3 ).

实验结果表明, 不同集聚系数的网络对不同中
心性指标的准确性有着不同的影响. 根据图 2的结
果显示, 度指标和介数指标的准确性会随着网络集
聚系数的增大而降低, 但度指标的变化较介数指标
不显著; 特征向量指标则会随着集聚系数的增大提
高准确性; 而紧密度指标的准确性受集聚系数变化
的影响不大.

对衡量节点的邻居数目的度指标而言, 随着网
络集聚系数的增大其准确性逐渐降低, 并且感染率
越大, 下降趋势越明显; 网络的紧密度准确性受集
聚系数的变化影响不大, 大概围绕在 0.78左右, 但
当疾病感染率小于 0.12时, 紧密度的准确性会随着
集聚系数的增大而降低; 介数指数的准确性随集聚
系数的变化影响较为显著, 从集聚系数C ≈ 0增长

到C ≈ 0.6的过程中, 介数的准确性从 0.6—0.7降
低至 0.3; 网络的集聚系数逐渐增大时, 特征向量指
标则表现越来越准确, 当感染率较低的时候, 准确
性提高不明显, 但是当感染率较高的时候, 准确性
的提高就非常显著了.
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图 2 不同集聚系数下中心性指标的准确性变化

Fig. 2. Variation of centrality measures accuracy with different clustering coefficient.
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图 3 不同感染率下中心性指标准确性变化

Fig. 3. Variation of centrality measures accuracy with different infectious rates.
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图 3的结果显示了不同的疾病感染率对中心
性指标的准确性有不同的影响: 度指标会随着感染
率的增大呈现出准确性先降后升的现象, 在降落过
程中, 不同的集聚系数表现一致; 但上升过程中, 网
络的集聚性越高上升越慢, 且准确性越差, β = 0.1

时准确性最差; 紧密度指标和特征向量指标则正好
相反, 随着感染率的增大指标准确性表现为先上升
后下降, 集聚系数越高, 下降的可能性就越低, 且准
确性越好, 均为β = 0.14时最准确; 介数指标在感
染率变化的过程中准确性的变化比较复杂, 当感染
率β = 0.04时, 介数指标的影响力评价准确性表现
最好, 当β = 0.1时表现最差, 另外, 随着感染率的
变化, 介数指标在不同集聚系数的网络对应的指标
准确性有明显的区分, 低集聚系数的网络准确性表
现良好, 高集聚系数的网络在β > 0.1时准确性表

现非常不理想.

3.2 AS网络实证分析

为了进一步验证网络集聚性对中心性指标准

确性的影响,本文引入了AS网络做实证分析. 该网
络是CAIDA 2005年的路由级拓扑测量数据获得
的无向网络 [35], 网络规模为 23752 个节点, 58416
条边.

本文通过对AS网络进行断边重连操作的方式
改变网络的集聚性. 一次断边重连操作就是在原网

络中随机找寻 2条边——如边 ab(节点 a与节点b
相连)和边 cd (节点 c与节点d相连), 将原边去掉,
改变节点的连接获得新边——即边 ad(节点 a与节
点d相连)和边bc (节点b与节点 c相连). 如此进
行Trec次得到新的网络, 如图 4所示, AS网络的初
始集聚系数为 0.60, 随着断边重连次数的增加, 集
聚系数呈现出下降的趋势: 当Trec = 2000时, 集
聚系数为 0.53; 当Trec = 20000时, 集聚系数减小
至 0.31. 对AS网络进行Trec次断边重连后的网络

实施SIR传播仿真实验, 得到节点的传播影响力
序列, 并分别与对应网络的中心性指标序列进行
Kendall’s Tau系数检验.
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图 4 AS网络断边重连次数 Trec与网络集聚系数C的

关系

Fig. 4. The network cluster coefficient (C) after run-
ning Trec times reconnection in the AS networks.
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Fig. 5. Variation of centrality measures accuracy with different clustering coefficient of re-connected AS
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根据图 5的结果可以发现, AS网络断边重连
后得到的新网络中, 集聚系数的变化对中心性指
标准确性的影响与可变网络中的影响类似: 在
0.3—0.6的集聚系数范围内, 度指标准确性随着集
聚系数的增大下降现象不显著, 感染率越高下降趋
势越明显, 感染率越低度指标的准确性越差; 紧密
度指标的准确性随着集聚系数的变化有轻微的抖

动, 在C = 0.35左右出现一个小峰值, 当网络的感
染率在 0.08左右时, 紧密度指标的准确性最高, 较
高的感染率会降低指标的准确度; 介数指标准确性
随着集聚系数的增大呈明显的下降现象, 当网络的
集聚系数从C = 0.3增加到C = 0.6, 介数指标所
对应于SIR模型得到的排序结果的Kendall相似值
差将近 0.3, 也就是介数指标的准确性受网络的集
聚系数变化的影响非常显著; 而特征向量指标则随
着网络集聚系数的增大Kendall系数的值呈上升现
象, 这也意味着网络的集聚性越高, 特征向量的准
确性越高, 并且该网络在感染率为 0.08左右时, 特
征向量的准确性最高至0.67. 因此, AS实证网络进
一步表明网络集聚性影响度、紧密度、介数及特征

向量中心性指标的准确性.

4 结 论

文章根据HK模型构造的不同集聚系数的网
络, 经过SIR仿真实验进行网络中节点的影响力评
价, 采用Kendall’s Tau系数讨论了不同网络集聚
性对中心性指标的准确性影响, 并用AS网络进行
实证分析. 分析表明, 基于SIR传播仿真得到的节
点影响力评价体系中, 不同的网络集聚性对不同的
中心性指标的准确性有着不同的影响.

因而, 当网络的集聚系数较低时, 可以根据需
要选择度或者介数作为中心性指标进行网络节点

影响力评价; 当网络的集聚系数较大时, 则要尽可
能放弃度指标较低的时间计算复杂度优势, 转而选
择紧密度指标或者特征向量指标. 就传播过程而
言, 紧密度和特征向量的准确性在任何集聚系数的
网络中都达到 0.7以上, 尤其是特征向量在网络的
集聚系数接近 0.6时准确性可以高达 0.85左右, 是
小规模网络的较优选择. 另一方面, 传播过程的感
染率越高, 度指标和介数指标越可靠, 紧密度和特
征向量则相反.

文章通过改变网络的集聚系数来改变网络拓

扑结构, 从而探索中心性指标的准确性. 然而文中
探索的四种指标不能代表使用的所有指标, 其他指

标的准确性又会随着结构的变化发生何种变化; 而
且网络结构不仅仅可以通过静态网络中的集聚性

来显示, 也可以通过连通性、平均距离以及度相关
性来反映, 在不同特性下, 中心性指标的准确性是
否会有所不同; 在网络结构时刻改变的时变网络
中 [42], 中心性指标的准确性又会发生什么样的变
化; HK模型构造的是无向网络, 如果是有向网络
的结构变化对节点中心性指标的准确性又会如何

影响; 传播模型的感染率也会影响准确性评价, 那
特定感染率下如何选择更合适的中心性指标. 这些
问题都有待进一步研究和解决.
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Abstract
Measurements of node centrality are based on characterizing the network topology structure in a certain perspective.

Changing the network topology structure would affect the accuracy of the measurements. In this paper, we employ the
Holme-Kim model to construct scale-free networks with tunable clustering, and consider the four measurements of
classical centrality, including degree centrality, closeness centrality, betweenness centrality and the eigenvector centrality.
For comparing the accuracy of the four centrality measurements, we simulate the susceptible-infected-recovered spreading
of the tunable clustering scale free networks. Experimental results show that the degree centrality and the betweenness
centrality are more accurate in networks with lower clustering, while the eigenvector centrality performs well in high
clustering networks, and the accuracy of the closeness centrality keeps stable in networks with variable clustering. In
addition, the accuracy of the degree centrality and the betweenness centrality are more reliable in the spreading process
at the high infectious rates than that of the eigenvector centrality and the closeness centrality. Furthermore, we also use
the reconnected autonomous system networks to validate the performance of the four classical centrality measurements
with varying cluster. Results show that the accuracy of the degree centrality declines slowly when the clustering of real
reconnected networks increases from 0.3 to 0.6, and the accuracy of the closeness centrality has a tiny fluctuation when
the clustering of real reconnected networks varies. The betweenness centrality is more accurate in networks with lower
clustering, while the eigenvector centrality performs well in high clustering networks, which is the same as in the tunable
clustering scale free networks. According to the spreading experiments in the artificial and real networks, we conclude
that the network clustering structure affects the accuracy of the node centrality, and suggest that when evaluating the
node influence, we can choose the degree centrality in the low clustering networks, while the eigenvector centrality and
the closeness centrality are still in the high clustering networks. When considering the spreading dynamics, the accuracy
of the eigenvector centrality and the closeness centrality is high, but the accuracy of the degree centrality and the
betweenness centrality is more reliable in the spreading process at high infectious rates. This work would be helpful for
deeply understanding of the node centrality measurements in complex networks.

Keywords: network science, node centrality, network structure, clustering coefficient

PACS: 89.75.Fb, 02.10.Ox DOI: 10.7498/aps.65.028901

* Project supported by the Natural Science Foundation of Shanghai, China (Grant No. 14ZR1427800).
† Corresponding author. E-mail: violet910516@163.com

028901-8

http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn
http://dx.doi.org/10.7498/aps.65.028901

	1引 言
	2模型回顾
	2.1 集聚系数的定义
	2.2 可变集聚系数的无标度网络构建
	Fig 1

	2.3 SIR传播模型

	3实验和仿真结果
	3.1 HK模型仿真结果分析
	Fig 2
	Fig 3

	3.2 AS网络实证分析
	Fig 4
	Fig 5


	4结 论
	References
	Abstract

