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Fig. 1. The characteristics of scale-free networks with
the tunable cluster: (a) Power-law degree distribu-
tions; (b) clustering coefficient with different parame-
ters M.
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Fig. 2. Variation of centrality measures accuracy with different clustering coefficient.
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Fig. 3. Variation of centrality measures accuracy with different infectious rates.
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Abstract

Measurements of node centrality are based on characterizing the network topology structure in a certain perspective.
Changing the network topology structure would affect the accuracy of the measurements. In this paper, we employ the
Holme-Kim model to construct scale-free networks with tunable clustering, and consider the four measurements of
classical centrality, including degree centrality, closeness centrality, betweenness centrality and the eigenvector centrality.
For comparing the accuracy of the four centrality measurements, we simulate the susceptible-infected-recovered spreading
of the tunable clustering scale free networks. Experimental results show that the degree centrality and the betweenness
centrality are more accurate in networks with lower clustering, while the eigenvector centrality performs well in high
clustering networks, and the accuracy of the closeness centrality keeps stable in networks with variable clustering. In
addition, the accuracy of the degree centrality and the betweenness centrality are more reliable in the spreading process
at the high infectious rates than that of the eigenvector centrality and the closeness centrality. Furthermore, we also use
the reconnected autonomous system networks to validate the performance of the four classical centrality measurements
with varying cluster. Results show that the accuracy of the degree centrality declines slowly when the clustering of real
reconnected networks increases from 0.3 to 0.6, and the accuracy of the closeness centrality has a tiny fluctuation when
the clustering of real reconnected networks varies. The betweenness centrality is more accurate in networks with lower
clustering, while the eigenvector centrality performs well in high clustering networks, which is the same as in the tunable
clustering scale free networks. According to the spreading experiments in the artificial and real networks, we conclude
that the network clustering structure affects the accuracy of the node centrality, and suggest that when evaluating the
node influence, we can choose the degree centrality in the low clustering networks, while the eigenvector centrality and
the closeness centrality are still in the high clustering networks. When considering the spreading dynamics, the accuracy
of the eigenvector centrality and the closeness centrality is high, but the accuracy of the degree centrality and the
betweenness centrality is more reliable in the spreading process at high infectious rates. This work would be helpful for

deeply understanding of the node centrality measurements in complex networks.

Keywords: network science, node centrality, network structure, clustering coefficient

PACS: 89.75.Fb, 02.10.0x DOI: 10.7498/aps.65.028901

* Project supported by the Natural Science Foundation of Shanghai, China (Grant No. 14ZR1427800).
1 Corresponding author. E-mail: violet910516@163.com

028901-8


http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn
http://dx.doi.org/10.7498/aps.65.028901

	1引 言
	2模型回顾
	2.1 集聚系数的定义
	2.2 可变集聚系数的无标度网络构建
	Fig 1

	2.3 SIR传播模型

	3实验和仿真结果
	3.1 HK模型仿真结果分析
	Fig 2
	Fig 3

	3.2 AS网络实证分析
	Fig 4
	Fig 5


	4结 论
	References
	Abstract

