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Fig. 1. A two-layer star networks. The intra-coupling
strengths are a1, ag, respectively, the inter-coupling
strength between hub nodes is dy and that between

leaves nodes is d.
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Table 1. Change of N, a, do, d for A2, 7 = Amax/A2.

b N K i a 3K Bi do 3K Bt d 14K
a<2d A K g N
A2 = min{a, 2d}
a>2d A A A iU PN
_ Na+2do a<2d N VSN DN A
min{a, 2d} a>2d DN 4 K o

028902-3


http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn

) I % R Acta Phys. Sin.

Vol. 65, No. 2 (2016) 028902

M1 ] LS H:

DX TR B8 FE T, Ha < 2dI,
Xo = a; Ha > 28, Ny = 2d, XU MK
FP RIS a B 2d 0% 2 a LB/, W45 1)
B HE T a R824 2d ELBU/INI, &I R 25 e
B d 1R 8 a B d IR 3G KR 2 14 R 2 () [5) 20 6 7).
XU 25 11 [F] 20 BE 1 7 J2 9 AR G 5 B LU LSS T
REENBEREA R, M= AHE R R
i, W2 B E A R 0 RS R ARG 58 A O,
UL, BN A Z AR A R 6], 55
HUUE R RETT;

2) X T RS HOAE FHE T, Ma < 2dBF, r =
(Na+2dy)/a; Ma > 2dBF, r = (Na+ 2dy)/(2d);
XU B Y a LN, a 3G OK 23 3G 5 X 25 1) [ 20
BEJ1, N, do 38 KT 23 A8 W 25 1) [R] 25 RE 75 A%
559; 4 2d ELE/INEF, 38K d 2350 W 4% (1) [F] 2D g
N, a, do WG R 23 25 (1) [R5 g 1178 55.

HAE O BaE R E.

BN = 200,a = 1, dy = 2, &t d, 55
Ao Hlr (E2). XTEREIEIC FAETE, 2 d IR/,
Ao = 2d, Ao BEFE d P3G KIMIG K, Nd > a/2=1/2

1.0

(a)

0.8

0.6

A2

0.4

0.2

Amax/ A2

r=

d

0 1 2 3 4 5

FIEH N = a = 1, BT LA Z 1 [F DR 715k
BEORJEAAR. X TR R RS Y, HdiR
INEE, 1 = (Na+2do)/(2d), B % d 138 K
WA, Hd > a/2 = 1/2)G, HTN > a,dy,d,
r = (Na+2dy)/a =~ Na/a = N, Fr A2 1 [F] 25
BE 1 et 5 L AR, BLRA T e AP TE
WA T, 2 d N0 RE a/20F, WL R RE
ISR, T TE RS a/2 )5, ML IR RE T3 AR
RAE. WA, d 1 a/2 K] 45 (1 [ 25 fig
R BB K, TR d X 48 1 [R5 RE T 5 A2 %
AT

2) N = 200,a =1,d =1 (a < 2d), Ttk
do, BEI N e (E3). LN =200,a =2,d=1/2
(a > 2d), Bt do, 752 Mg Ml (B 4). 35T [F) 2545k
TG, Lika < 2dBKa > 2d, do FBLIEANR
AR No PRI, A0 A2 150 09 265 19 () 20 BB ) B AN AR
i T [F A RS, Za < 240, rHEIT
T Na, r B do FIHERIEA R K, WZE )[R 2 5E )
WEAARSS; T a > 2d I, r FIFEEEE T Na, r %
do FIRE WA /N, X265 (1 [7 25 BE A5 1 5.

1000

(b)

600

000000 O O O O

400

0 1 2 3 4 5
d

K2 (a) Az, (b)r = Amax/A2 BEPI)Z BIEILEHIH-T-35 5 2 [0 2 AR & 90 d 1AL
Fig. 2. (a) A2, (b) 7 = Amax/A2 changes with the interlayer coupling strength between the leaf nodes of the

two-layer star networks d, respectively.
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Fig. 3. (a < 2d). (a) A2, (b) r = Amax/A2 changes with the interlayer coupling strength between the hub

nodes of the two-layer star networks dg, respectively.
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Fig. 4. (a) A2, (b) » = Amax/A2 changes with the interlayer coupling strength between the hub nodes of the

two-layer star networks dg, respectively, a > 2d.
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Fig. 5. (a) A2, (b) 7 = Amax /A2 changes with the intralayer coupling strength of the two-layer star networks a, respectively.
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Fig. 6. (a) A2, (b) 7 = Amax/A2 changes with the size of star networks N, respectively, a < 2d.
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Fig. 7. (a) A2, (b) * = Amax/A2 changes with the size of star networks N, respectively, a > 2d.
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A =X =(Nata+2+/N2(a—1)2+4)/2
JAD): flEd =1, X a; = ay = a. B
(5) A% £ HIRFEE 2 TR

IM =L = A= a)N 2\ =2)(A\—a —2)VN 2
x (A= Na)(A — Na — 2).

Jit CLRFAIEAE /2
07 a,---,a, 2>a+2>"',a+2, Na, N(I+2,
—— —_——
N-2 N-2

Frh77 a8 (1) B A2 = min{a, 2}, A2, = Na + 2.

J7(IID): [5E a1 = ap = 1, B0 d. N (5)
A L MRHEZ BN

IAN=L|=XA=2d) (A — DV 2N -1 -2a)N 2
x (A= N)(A— N —2d).

2% R B

0,2d, 1,---,1, 1+2d,---,1+2d, N, N+ 2d.
~——
N-2 N-—-2
AL 3 (TIT) (9 A3 = min{2d, 1}, A3 .. = N + 2d.

N I A SO AR R RN B R S R, A
RIS R TR BB, BLz ik FEms—Fh oy 2.

X E] 5 TG A Y, Bk =R Oy O
PIXa 3R M = (a+ 3 — /(a—1)2+4)/2,
A3 = min{a,2}, A3 = min{2d, 1}. @ H LR
BE: Ha=d< (2-V2)/20, AL > A3 > \3;
M2-V2)/2 <a=d< 1B, A > A\ > A3
Ya =d > 10, A2 > A > A FTBA MK
BMa =d < (2—V2)/20, ®#HITD); =
(2-V2)/2 < a=d < LB, EHIFTRJAI); H
a=d> 1K, EH7 = (1),

St A5 3 S0, =y 206 LA r R EX
fH2:

1 Na+ta+2+/N?*(a—1)>+4

a+3—+/(a—1)2+4
r? = max{(Na +2)/a, (Na+2)/2},
r3 = max{(N + 2d)/2d, N + 2d},

Hrl, r2, e = dBEMESHLS KM
Ak i B =M 07 SOA A S B e, B AE AT R AL Y %%
IR 2R M. B R or < og <
03 < 04 < 05 < 0 < 07 < o0g. WL ITHRE
Flog = (N —4)/(2N —4), 04 = 05 = 05 = 1,
0os = (2N —2)/(N — 4), o1, 02, o7 FIMHRHE
A, EHAXN HHTIHE. Ya = d < o B,
rt<r?<rd, Mo <a=d<os B, r2 <rl <r3;
Moy <a=d<oshl, r? <rd<rly Hog<a=
d<1i, A <r? <rly ¥l <a=d< o
i, 2 < rl < 3 Moy < a = d < oght,
r? < rd <l Ba=d>oglf, P < r? <l
WHARRENa = d < oo, EHEFTKJ),; X
on<a=d<o3M1l <a=d< oghf, &I
(I1); Zos<a=d<1fa=d>oght, EFH
(110).
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I A2 7 = Apax/A2 HFL FTUMEREa =d =1
FR R b, AR R i R Ok A I 245 1) [ A g
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SREERT, A2 > AL > A3, EFE 7 (). X F RS
WA SMEE, NES(b) A, Ma=d < o i,
rt<r? <3 PBEFETR(), oy <a=d< oy
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EFETRNAD), Hoy <a=d< 1fa=d> ozl
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“ 14
<40
g 13
E /
~ 5
I 30 1270
. ! Sl
1
20 |
10 LS
0 1 2 3 4 5

HE AL

8 WIREIMLE Xa(a) F 7 = Amax/A2(b) G RN K R

Fig. 8. The relations between coupling strength and Az(a) and 7 = Amax/A2(b) of two-layer star networks.

EREAREURRA, X T EIBKIPE M, 1
SR B HI 55 9 48 [ [F) 20 B8 0, AREER A7 30(T), (1)
ol (TIT), EEARYE J= A R 15 5 P A= TR 5 9 11
KARGE, FHEA Eas— 1T

3.3 FE BA LirE MK

BA Jobr £ ) 2% BE A% B0 1 20 i B S vh ¥ 2 K
SE A28 FIRFAE, AN AT 0 BT — FURE R 0 BA Y
JEM %, BAE R NRE T ERWEEIBM
2%, TXANNZ P2 B R BA TOAREE 2%, T A
BN = 200, WIHIRMZEIE mo = 3 4R M4,
YCHHE I — A5 S m = 3430, BRI 2]
PRI R LR R, BN BEANRIS i —— %
A O = 4. AR 10% N 2RI B A
hub 7 5, AR 575 5

DEN =200,a = 1, dy = 2, 5% d, 155\,
Mo (B9). XTI FHTEL, dBUNMT, A
b d (IR K, M dikE]a/2 = 1/2 BHZE, X,
ANTRBE d B OR T AR AL, B 45 B[R] 25 B ) 56 1 5
Ja AR W TR SRS, dEUNN, rBEd

FI3G RIS, M dikEla/2 = 1/2ME)5, r BEd
I3 RFE AR, W24 11 [F] 25 e ) S 3 it 5 B A TR
FEAAS. IX U d 7F a,/2 PRI RT3 X 25 1) [R) 25 R
KK,

2) LN =200,a=1,d=1(a < 2d) fla = 2,
d = 1/2(a > 2d), % do, 1FE] X Flr (K 10F0
EI11). TR ARG, M a<2d i, do A
SO N IAE, PIES IR IRID R IR Ha > 2d I,
do HIHE R 23800 N FRAEL, X2 (1) [ 25 RE ) g A 1
9. X EPIECE RS, Ma < 2B, rBEE dy
R T B A 38 0, [R5 B8 I8 AR 55, 2 a > 2d
I, r BEE do FIBGRMAZ /DN, X 2% 1 [R) 25 e ) 1S 5.

3)HUN = 200,dy = 2,d = 1, 5% a, 135\,
Moy (Bl12). Xt TR AEE, 2 aB/NE
Ao B a B3 KGR, 4 a3 KF a = 2 BT, Ao
PMEAN PR3, 2% 1 [E] 20 e ) Je 15 5 A A, Xt
TR IEAE RS, o BN, rBE a 35 KT 5
AN, oG KB a = 2 TN, rBE o B3R TTRGE
TR, W& (1) [R] 22 B 7 56 1 5 Jm TR AR 55
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Fig. 9. (a) A2, (b) 7 = Amax/A2 changes with the interlayer coupling strength between the leaf nodes of the

two-layer BA networks d, respectively.
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Fig. 10. (a) A2, (b) = Amax/A2 changes with the interlayer coupling strength between the hub nodes of
the two-layer BA networks dg, respectively, a < 2d.
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Fig. 11. (a) A2, (b) 7 = Amax/A2 changes with the interlayer coupling strength between the hub nodes of
the two-layer BA networks do, respectively, a > 2d.
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Fig. 12. (a) A2, (b) 7 = Amax/A2 changes with the intralayer coupling strength of the two-layer BA networks

a, respectively.
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Fig. 13. (a) A2, (b) 7 = Amax/X2 changes with the size of BA networks N, respectively, a < 2d.
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Fig. 14. (a) A2, (b) » = Amax/A2 changes with the size of BA networks N, respectively, a > 2d.
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Fig. 15. The relations between coupling strength and A2(a) and 7 = Amax/A2(b) of two-layer BA networks.
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Abstract

From the study of multilayer networks, scientists have found that the properties of the multilayer networks show
great difference from those of the traditional complex networks. In this paper, we derive strictly the spectrum of the
Supra-Laplace matrix and the synchronizability of two-layer star networks by applying the master stability method.
Through mathematical analysis of the eigenvalues of the Supra-Laplace matrix, we study how the node number, the
inter-layer and the intra-layer coupling strengths influence the synchronizability of a two-layer star network. We find
that when the synchronous region is unbounded, the synchronizability of a two-layer star network is only related to the
intra-layer coupling strength between the leaf nodes or the inter-layer coupling strength of the entire network. If the
synchronous region of a two-layer star network is bounded, not only the inter-layer coupling strength of the network and
the intra-layer coupling strength between the leaf nodes, but also the intra-layer coupling strength between the hub nodes
and the network size have influence on the synchronizability of the networks. Provided that the same inter-layer and intra-
layer coupling strengths are concerned, we would further discuss the optimal ways of strengthening the synchronizability
of a two-layer star network. If the inter-layer and intra-layer coupling strengths are far less than unity, changing the
intra-layer coupling strength is the best way to enhance the synchronizability no matter what the synchronous region
is. While if the coupling strengths are the same as, less than or more than unity, there will be different scenarios for
the network with bounded and unbounded synchronous regions. Besides, we also discuss the synchronizability of the
multilayer network with more than two layers. And then, we carry out numerical simulations and theoretical analysis
of the two-layer BA scale-free networks coupled with 200 nodes and obtain very similar conclusions to that of the two-
layer star networks. Finally, conclusion and discussion are given to summarize the main results and our future research

interests.
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