
基于散射量子行走的完全图上结构异常搜索算法

薛希玲 陈汉武 刘志昊 章彬彬

Search algorithm of structure anomalies in complete graph based on scattering quantum walk

Xue Xi-Ling Chen Han-Wu Liu Zhi-Hao Zhang Bin-Bin

引用信息 Citation: Acta Physica Sinica, 65, 080302 (2016) DOI: 10.7498/aps.65.080302
在线阅读View online: http://dx.doi.org/10.7498/aps.65.080302
当期内容View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I8

您可能感兴趣的其他文章

Articles you may be interested in

基于相位匹配的量子行走搜索算法及电路实现

Quantum walk search algorithm based on phase matching and circuit cmplementation
物理学报.2015, 64(24): 240301 http://dx.doi.org/10.7498/aps.64.240301

球坐标中三维各向同性谐振子的类经典态

Near classical states of three-dimensional isotropic harmonic oscillator in spherical coordinate system
物理学报.2015, 64(8): 080301 http://dx.doi.org/10.7498/aps.64.080301

星图上的散射量子行走搜索算法

Scattering quantum walk search algorithm on star graph
物理学报.2015, 64(1): 010301 http://dx.doi.org/10.7498/aps.64.010301

不同磁场环境下Heisenberg XXZ自旋链中的热量子失协
Thermal quantum discord in Heisenberg XXZ model under different magnetic field conditions
物理学报.2013, 62(11): 110303 http://dx.doi.org/10.7498/aps.62.110303

http://wulixb.iphy.ac.cn/CN/volumn/home.shtml
http://dx.doi.org/10.7498/aps.65.080302
http://dx.doi.org/10.7498/aps.65.080302
http://wulixb.iphy.ac.cn/CN/Y2016/V65/I8
http://wulixb.iphy.ac.cn/CN/abstract/abstract66152.shtml
http://wulixb.iphy.ac.cn/EN/abstract/abstract66152.shtml
http://dx.doi.org/10.7498/aps.64.240301
http://wulixb.iphy.ac.cn/CN/abstract/abstract63917.shtml
http://wulixb.iphy.ac.cn/EN/abstract/abstract63917.shtml
http://dx.doi.org/10.7498/aps.64.080301
http://wulixb.iphy.ac.cn/CN/abstract/abstract62322.shtml
http://wulixb.iphy.ac.cn/EN/abstract/abstract62322.shtml
http://dx.doi.org/10.7498/aps.64.010301
http://wulixb.iphy.ac.cn/CN/abstract/abstract53897.shtml
http://wulixb.iphy.ac.cn/EN/abstract/abstract53897.shtml
http://dx.doi.org/10.7498/aps.62.110303


物 理 学 报 Acta Phys. Sin. Vol. 65, No. 8 (2016) 080302

基于散射量子行走的完全图上结构

异常搜索算法∗
薛希玲 陈汉武† 刘志昊 章彬彬

(东南大学计算机科学与工程学院, 南京 210096)

( 2015年 11月 2日收到; 2016年 1月 11日收到修改稿 )

完全图KN上某个顶点连接到图G将破坏其对称性. 为加速定位这类结构异常, 基于散射量子行走模型
设计搜索算法, 首先给出了算法酉算子的定义, 在此基础上利用完全图的对称性, 将算法的搜索空间限定为一
个低维的坍缩图空间. 以G为一个顶点的情况为例, 利用硬币量子行走模型上的研究结论简化了坍缩图空间
中酉算子的计算, 并借助矩阵扰动理论分析算法演化过程. 针对星图SN 上结构异常的研究表明, 以星图中心
节点为界将整个图分为左右两个部分, 当且仅当两部分在N → ∞时具有相同的特征值, 搜索算法可以获得
量子加速. 本文说明星图上的分析方法和结论可以推广至完全图的坍缩图上. 基于此, 本文证明无论完全图
连接的图G结构如何, 搜索算法均可在O(

√
N)时间内定位到目标顶点, 成功概率为 1 − O(1/

√
N), 即量子

行走搜索该类异常与经典搜索相比有二次加速.

关键词: 散射量子行走, 量子搜索, 完全图
PACS: 03.67.Ac, 03.65.Aa DOI: 10.7498/aps.65.080302

1 引 言

经典随机行走为因式分解、k-SAT、图同构等
问题提供了一些最广为人知的算法. 与经典的连
续和离散随机行走相对应, 量子行走也分为连续时
间量子行走和离散时间量子行走, 二者都是通用的
计算模型 [1−3]. 其中离散量子行走又包含了硬币量
子行走 [4]和散射量子行走 [5]. 图上的硬币量子行
走是定义在顶点上的行走, 需要一个辅助的硬币空
间, 其维数为顶点的度数. 散射量子行走将图的所
有边编码成量子态, 行走不使用硬币算子. 文献 [6]
证明两种离散量子行走酉等价, 但散射量子行走在
非正则图上的定义更加自然且物理实现更加直接.
目前量子行走已有不同物理系统的实验室实现, 如
离子阱 [7]和光网络中的光子 [8,9].

大量研究证实量子行走是设计量子算法的有

用工具, 其中尤为显著的是搜索算法的设计 [10−16].

现有的量子行走搜索算法均定义在具有某种对称

性的图上, 如超立方体 [10,11]、强正则图 [14]、星图

等 [16], 但能获得量子加速的图需要具有何种性质
目前尚无定论. 基本的搜索算法存在一个或多个使
用 oracle标识的目标顶点, 算法的目标是找到该顶
点. 近期的研究表明量子行走在星图上查找标记结
构或打破图的对称性的结构方面的有用性 [17−19].
文献 [19]给出了星图上几类结构异常的搜索算法,
如叶节点连接到另一个星图等. 这类算法针对每类
不同的异常设计特定的初态, 使用矩阵扰动理论分
析演化算子的特征谱来分析算法的演化过程, 计算
复杂且不具有通用性. Cottrell [20,21]通过数学分析

给出了搜索星图的叶节点连接图G的一般结论. 以
星图中心节点为界将整个图划分为左右两部分, 证
明当且仅当两部分在N → ∞时具有相同的特征值
可以获得二次加速, 并且证明时间复杂度的下界为
O(

√
N).
星图上顶点之间的关系简单, 演化算子的形式
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相对固定, 已有研究均针对星图上的结构异常. 本
文基于散射量子行走模型研究完全图KN上存在

某个顶点连接到图G的结构异常, 设计搜索算法
定位该顶点. 文中第二节定义了搜索算法使用的
演化算子, 介绍了坍缩图的概念. 第三节以G为一

个顶点的情况为例, 借助矩阵扰动理论给出了算
法演化过程的分析, 并利用硬币量子行走模型上
的研究结论 [22]简化了酉算子的推导过程. 第四节
介绍了Cottrell在星图上的结论并说明其适用于完
全图. 在此基础上得到本文的主要结论, 即证明无
论完全图连接的图G结构如何, 搜索算法均可在
O(

√
N)时间内以1−O(1/

√
N)的成功概率定位到

异常顶点.

2 基本概念与定义

2.1 散射量子行走模型

在图G(V,E)上的散射量子行走对应的

Hilbert空间由图的所有边张成, 且每条边对应两
个基态. 对于图G的每个顶点k(k ∈ V )存在两个

不重叠的子空间: 由顶点k出发的基态张成的子空

间Ak和以顶点k为终点的基态张成的子空间Ωk.
散射量子行走可看作是从Ωk → Ak的映射, 即在
顶点k的散射, 如图 1所示. 局部酉算子Uk作用于

k

k

(a) (b)

(c)

k

Ωk Ak

U↼k↽

图 1 (a)以 k为终点的基张成的子空间Ωk; (b)以 k为出

发点的基张成的子空间Ak; (c) 酉变换U (k) : Ωk → Ak

是在顶点 k的散射

Fig. 1. (a) The subspace Ωk of states entering ver-
tex k; (b) the subspace Ak of states exiting vertex k;
(c) the action of the local unitary U (k) : Ωk → Ak

can be viewed as scattering on vertex k.

每个顶点, 将入边态映射为出边态, 图G上的酉算

子为所有顶点演化算子的并: Γ ⊕k Uk, k(k ∈ V ),
Γ 是作用于基态的置换算子.

2.2 局部演化算子的定义

搜索算法对目标顶点和非目标顶点执行不同

的操作. 对于基本搜索算法, 若k是目标顶点则对

其进行一次反射Uk|j, k⟩ = eiϕ|k, j⟩. 否则Uk定

义如下: Uk|j, k⟩ = r|k, j⟩ + t
∑
l ̸=j

|k, l⟩, 这里 r和

t是使得U满足酉性的反射和透射因子. 对于度
为d的顶点, 算子的酉性要求 |r|2 + (d − 1)|t|2 = 1

和 rt∗ + r∗t + (d − 2)|t|2 = 0. 若取 r = −1 +
2

d
,

t =
2

d
,则对应于Grover算子 [23] G = 2|φ⟩⟨φ|−I =

2

n
− 1

2

n
· · · 2

n

2

n

2

n
− 1 · · · 2

n
· · · · · · · · · · · ·
2

n

2

n
· · · 2

n
− 1


n×n

, 其中均匀叠加态

|φ⟩ =
1√
n

n−1∑
i=0

|i⟩. 该算子是所有满足酉性和置换

对称性的算子中距恒等算子最远的 [4], 这在直观上
能加快行走的扩散速度.

为搜索完全图上的结构异常, 算子的定义是
算法的关键. 不失一般性, 设完全图KN上顶点

1连接到图G, 记 dk为顶点 k的度, rk =
2

dk
− 1,

tk =
2

dk
. 作用于顶点k的酉算子Uk定义如下:

Uk|j, k⟩ =


eiϕ

(
rk|1, j⟩+ tk

∑
l ̸=j

|1, l⟩
)
, k = 1,

rk|k, j⟩+ tk
∑
l ̸=j

|k, l⟩, k ̸= 1.

(1)

下述算法中我们取ϕ = π, 算子Uk对入射边

进行散射并执行一次oracle查询标记目标顶点. or-
acle是用于研究判定问题的抽象机器, 在经典算法
设计中有广泛应用. 可以将其视为能够在单个时间
步内确定某个判定问题的黑箱, 亦即 oracle能够识
别特定问题的解. 其本质同其他函数一样, 提供了
一种量化执行一个搜索算法所需资源的方式. 在
量子计算的背景下, 作为简化算法设计过程的工
具, 使用 oracle来识别满足条件的解. 搜索算法以
oracle的调用次数衡量时间复杂度, 即查询复杂度.
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2.3 坍缩图上的量子行走

定义1 图的同构是保持图不变的顶点和边

的置换. 若图G(V,E)上定义了算子U , 自同构
A : E → E满足A−1UA = U , 即A和U对易, 称
A为量子图自同构 [21]. 量子图自同构是保持U

的作用不变的顶点和边的置换. 若存在边的集合
X ⊆ E, 使得∀e ∈ X, Ae ∈ X, 则 {e}构成一个等
价类, 同一等价类的边构成坍缩图上的一条边.

定义2 对任意定义了算子U的图G, 其在量
子图自同构A作用下的坍缩图 [21]对应下列状态

GA ≡ {ψ : Aψ = ψ}. 即GA由在量子图自同构A

的作用下保持不变的状态构成. 注意坍缩图的定义
借助图上的边和Hilbert空间状态的对应关系.

考虑完全图K3在算子U作用下的坍缩图, 如
图 2所示. 定义算子U在K3上的作用如下: 在
顶点 a为严格反射的, 顶点 b, c为严格透射的,
例如U |b, a⟩ = |a, b⟩, U |b, c⟩ = |c, a⟩. 惟一不平
凡的量子图自同构A交换 b和 c, 即A做如下交

换: |a, b⟩ ↔ |a, c⟩, |b, a⟩ ↔ |c, a⟩, |b, c⟩ ↔ |c, b⟩.
原图K3有 3条边对应 6个状态, 带自环边的坍
缩图对应 3个状态: |ψ1⟩ =

1√
2
(|a, b⟩ + |a, c⟩),

|ψ2⟩ =
1√
2
(|b, a⟩+ |c, a⟩), |ψ3⟩ =

1√
2
(|b, c⟩+ |c, b⟩),

注意 {|ψi⟩, i = 1, 2, 3}在U的作用下封闭, 即
U |ψ1⟩ = |ψ3⟩, U |ψ2⟩ = |ψ1⟩, U |ψ3⟩ = |ψ2⟩.

算法在坍缩图GA的不变子空间中演化, 如果
初始状态在该子空间中, 量子行走将局限于这个子
空间. 若坍缩图状态空间的维度极大地降低, 可以
简化算法分析过程.

a

b

(a) (b)

c

a b֒ c

图 2 (a) 完全图K3; (b) K3的坍缩图

Fig. 2. (a) Complete graph K3; (b) collapsed graph of K3.

3 搜索算法描述和分析

3.1 算法描述

假设完全图KN上某顶点连接到图G, 为定
位到该顶点, 基于查询模型的搜索算法基本步骤
如下:

1) 初始化系统状态为均匀叠加态

|ψinit⟩ =
1√

N(N − 1)

N∑
i=1

N∑
j=1j ̸=i

|i, j⟩;

2) 应用扰动的行走酉算子U , 执行次数为m;
3) 测量终态 |ψfinal⟩ = Um|ψinit⟩.
将系统状态初始化为均匀叠加态是由于无

法预知目标顶点的信息, 对算法而言所有顶点是
等价的. 迭代次数m的取值须使得以最大概率

测得目标顶点, 要通过对算法演化过程的分析得
到. 在散射量子行走模型下算法的一般分析模式
如下 [18,19]: 首先找到行走发生的低维不变子空
间, 即坍缩图的行走空间, 确定该空间中算子U

的形式. 然后求解U的特征值λ和特征向量 |vλ⟩,
这要利用矩阵微扰理论, 取N → ∞的极限求得 0
阶解, 然后对其修正得到近似解. 将初态用特征
向量表出, 计算U在该状态上的作用, 最终根据
|ψfinal⟩ =

∑
λ

λm⟨vλ|ψinit⟩|vλ⟩计算最大成功概率

及时间步m.

3.2 坍缩图上的状态和算子

设外接图G为一个顶点, 记为N + 1, 如
图 3 (a), 以此为例给出搜索算法的分析过程. 为
确定行走发生的不变子空间, 考察完全图KN在

(1)式定义的酉算子下的坍缩图. 自同构映射A要

反映U , 则完全图中与目标顶点１相连的边与其他
边分属不同的等价类, 连接点N + 1的完全图KN

在A作用下的坍缩如图 3 (b)所示. 点 c由原图的

N − 1个点坍缩得到, 其上的自环边由原图每个顶
点的N − 2条边坍缩而来.

 

cN⇁  N⇁  

N

(a) (b)

图 3 (a)顶点 1连接外接顶点N+1的完全图KN (N =

6); (b) KN 的坍缩图

Fig. 3. (a) Complete graph KN (N = 6) with an ex-
ternal vertex N+1 attached to vertex 1; (b) collapsed
graph of KN .

定义如下5个状态: |1, N + 1⟩, |N + 1, 1⟩,

|ψL⟩ =
1√
N − 1

N∑
i=2

|i, 1⟩, (2)
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|ψR⟩ =
1√
N − 1

N∑
i=2

|1, i⟩, (3)

|ψC⟩ =
1√

(N − 1)(N − 2)

N∑
i=2

N∑
j=2
j ̸=i

|i, j⟩. (4)

坍缩图上点 1在原图中的度为N , r1 = −1 +
2

N
, t1 =

2

N
; 点 c在原图中的度为N − 1, rc = −1+

2

N − 1
, tc =

2

N − 1
. 定义U |1, N +1⟩ = |N +1, 1⟩,

代入 (1)式, 得坍缩图上算子U的作用为

U |N + 1, 1⟩

= r1|1, N + 1⟩+ t1

N∑
i=2

|1, i⟩

= r1|1, N + 1⟩+ t1
√
N − 1|ψR⟩

=

(
2

N
− 1

)
|1, N + 1⟩+ 2

√
N − 1

N
|ψR⟩,

U |ψL⟩ = − 1√
N − 1

N∑
i=2

(
r1|1, i⟩+ t1

∑
j ̸=i

|1, j⟩
)

= − 1√
N − 1

N∑
i=2

[
r1|1, i⟩+ t1

(
|1, N + 1⟩

+
N∑
j=2

|1, j⟩ − |1, i⟩
)]

= − (r1 − t1)√
N − 1

N∑
i=2

|1, i⟩

− t1√
N − 1

N∑
i=2

|1, N + 1⟩

− t1√
N − 1

N∑
i=2

N∑
j=2

|1, j⟩

= − t1
√
N − 1|1, N + 1⟩

− (t1(N − 1)− 1)|ψR⟩

= − 2
√
N − 1

N
|1, N + 1⟩ − N − 2

N
|ψR⟩,

U |ψR⟩ =
1√
N − 1

N∑
i=2

(
rc|i, 1⟩+ tc

N∑
j=2
j ̸=i

|i, j⟩
)

=
rc√
N − 1

N∑
i=2

|i, 1⟩

+
tc√
N − 1

N∑
i=2

N∑
j=2
j ̸=i

|i, j⟩

= rc|ψL⟩+ tc
√
N − 2|ψC⟩

= − N − 3

N − 1
|ψL⟩+

2
√
N − 2

N − 1
|ψC⟩,

U |ψC⟩ =
1√

(N − 1)(N − 2)

×
N∑
i=2

N∑
j=2
j ̸=i

(
rc|j, i⟩+ tc

N∑
l=1
l ̸=i,j

|j, l⟩
)

=
1√

(N − 1)(N − 2)

×
N∑
i=2

N∑
j=2
j ̸=i

[
rc|j, i⟩+ tc

(
|j, 1⟩

+

N∑
l=2
l ̸=j

|j, l⟩ − |j, i⟩
)]

=
rc − tc√

(N − 1)(N − 2)

N∑
i=2

N∑
j=2
j ̸=i

|j, i⟩

+
tc√

(N − 1)(N − 2)

N∑
i=2

N∑
j=2
j ̸=i

|j, 1⟩

+
tc√

(N − 1)(N − 2)

N∑
i=2

N∑
j=2
j ̸=i

N∑
l=2
l ̸=j

|j, l⟩

=− |ψC⟩+ tc
√
N − 2|ψL⟩+ tc(N − 2)|ψC⟩

=
2
√
N − 2

N − 1
|ψL⟩+

N − 3

N − 1
|ψC⟩.

由上式可见状态 {|1, N + 1⟩, |N + 1, 1⟩, |ψL⟩,
|ψR⟩, |ψC⟩}在U的作用下是封闭的, 即张成了U

的不变子空间, 且在该子空间中

U =

0 −N − 2

N
−2

√
N − 1

N
0 0

1 0 0 0 0

0 0 0 −N − 3

N − 1

2
√
N − 2

N − 1

0
2
√
N − 1

N
−N − 2

N
0 0

0 0 0
2
√
N − 2

N − 1

N − 3

N − 1


,

容易验证U †U = I.
上述推导过程较为繁琐, 可以利用我们在硬

币量子行走上的研究结论简化计算过程. 使用
Grover硬币算子的量子行走, 设原图上度为d的点

k所属的等价类集合 {k}坍缩为坍缩图上度为 2的
点a, 且坍缩图上的左右两条边分别由原图上x条
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边和d− x条边坍缩得到. 令Px是由d阶单位矩阵

经如下变换得来的 2 × n维矩阵: 将其前x行相加

并归一化, 后d− x行相加并归一化,

Px =


1√
x

· · · 1√
x

0 · · · 0

0 · · · 0
1√
d− x

· · · 1√
d− x

 ,

则坍缩图上点a的硬币算子为

Ca = PxGPT
x =


2x

d
− 1

2
√
x(d− x)

d

2
√
x(d− x)

d
1− 2x

d

 .

Ca的作用与原图中的Grover硬币算子相同, 都是
在二维的平面上的反射.

散射量子行走和硬币量子行走是酉等价的, 且
在本文算子定义中局部酉算子亦为Grover算子 (若
k = 1则有全局相位−1). 若散射量子行走的坍缩
图上点a的度为 2, 将a的入边空间Ωa映射为出边

空间Aa的算子即为Ca. 具体来说, 图 3 (b)上点
1的算子U1将基为 {|N + 1, 1⟩, |ψL⟩}的入射边空
间Ω1映射到基为 {|1, N + 1⟩, |ψR⟩}的出射边空间
A1. 点 1的度数由原图上的N变为 2, 且左右两条
边分别由 1条边和N − 1条边坍缩而来, 令d = N ,
x = 1, 则

U1 =


2

N
− 1 −2

√
N − 1

N

2
√
N − 1

N
−
(
1− 2

N

)
 ,

注意第二列的负号是标记目标顶点 1的全局相位.
同样, 对点 c而言算子Uc将基为{|ψR⟩, |ψC⟩}的Ωc

映射到基{|ψL⟩, |ψC⟩}的Ac,

Uc =


2

N − 1
− 1

2
√
N − 3

N − 1

2
√
N − 3

N − 1
1− 2

N − 1

 .

坍缩图上点N + 1的度数和原图相同, 都是1, 故算
子也不变. 由此可以直接给出坍缩图上算子U 的

形式.

3.3 算法分析

接下来分析算法的演化过程,即分析U的特征

谱. 由 |λU − I| = 0, 得特征方程

λ5 − N − 3

N − 1
λ4 +

2(N − 2)

N(N − 1)
λ3 +

2(N − 2)

N(N − 1)
λ2

− N − 3

N − 1
λ+ 1 = 0.

容易看出, λ = −1是其精确解, 即

(λ+ 1)

(
λ4 − 2(N − 2)

N − 1
λ3 +

(N + 1)(N − 2)

N(N − 1)
λ2

− 2(N − 2)

N − 1
λ+ 1

)
= 0. (5)

使用矩阵微扰理论, 当N → ∞时, 其零阶方程为

λ50 − λ40 − λ0 + 1 = 0,

即

(λ0 − 1)2(λ20 + 1)(λ0 + 1) = 0.

取其二重根λ0 = 1, 令λ = ∆ + 1, 代入 (5)
式四阶子式求修正项∆. 丢掉高阶项, 解方程
N∆2+4∆+2 = 0,得∆ = ±i

√
2ε+O(ε),其中 ε =

1/N . 故算子U的特征值λ± = 1 ± i
√
2ε + O(ε),

对应特征向量

|v±⟩ =
1√
2

(
0 0 ∓ i√

2
± i√

2
1

)T
+O(

√
ε),

注意到对应外接图部分的分量为0.
算法的初态可表示为

|ψinit⟩ =
1√
N

|ψL⟩+
1√
N

|ψR⟩+
√
N − 2

N
|ψC⟩

=
1√
2
(|v+⟩+ |v−⟩) +O(

√
ε).

令λ± = e±iθ + O(ε), θ =
√
2ε, 则m步之后系统

的状态

|ψfinal⟩ = Um|ψinit⟩

=
1√
2
(λm+ |v+⟩+ λm− |v−⟩) +O(

√
ε)

=
1√
2



0

0

− i√
2
( eimθ − e−imθ)

i√
2
( eimθ − e−imθ)

eimθ + e−imθ


+O(

√
ε)

=



0

0

−i sin(mθ)

i sin(mθ)
√
2 cos(mθ)


+O(

√
ε).

当mθ = π/2, m = O(
√
N)时测量, 系统以

1−O(
√
ε)的概率落在与点1相连的边上.
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4 完全图上搜索结构异常

上述算法的分析虽然直观, 但计算过程较为繁
琐, 特别是当U的维数较大时. 文献 [20]针对星图
连接到图G的结构异常给出了U的特征值和特征

向量的近似估计. 本节阐述星图上的条件及结论而
省略推导过程, 并将结论加以推广从而得出完全图
上搜索结构异常的一般结论.

4.1 星图上搜索结构异常

设星图SN上叶节点 1连接到图G, 将星图以
中心节点 0为界分为左右两部分, 如图 4 (a) 所
示. 对任意的N记算子U为U(ε), ε = 1/N , 令
N → ∞ 得到演化算子U(ε)的零阶矩阵U(0).
记U(0)对应图的左右两侧的矩阵分别为U0,L和

U0,R, 由于图的两部分仅通过一个点相连, U(0)为

U0,L和U0,R组成的对角阵U(0) =

U0,L 0

0 U0,R

.

文献 [21] 证明当且仅当U0,L和U0,R存在具有相

同特征值λ0的特征向量 |ι0⟩和 |τ0⟩时, U(ε)具有

成对出现的特征值λ± = λ0 e±ic
√
ε + O(ε), 其中

c = lim
ε→0

1√
ε
|⟨ι0|U |τ0⟩|. 对应的特征向量 |v±⟩可以

用 |ι0⟩和 |τ0⟩近似表示, |v±⟩ =
1√
2
(∓i|ι0⟩+|τ0⟩)+

O(
√
ε). 算法将在O(

√
N)的时间内将系统从 |τ0⟩

移动至 |ι0⟩,即系统位于图左侧的概率为1−O(
√
ε).

基于连续量子行走模型的搜索算法使用简并微扰

理论分析强正则图上搜索算法演化过程有类似结

果 [14].

星图上定义状态 |ψout⟩ =
1√
N − 1

N∑
i=2

|0, i⟩,

|ψin⟩ =
1√
N − 1

N∑
i=2

|i, 0⟩, 在基 {|ψout⟩, |ψin⟩}下,

U0,R =

 0 1

eiϕ 0

. 其特征值为± ei ϕ2 , 特征向

量 |τ0⟩ =
1√
2
(|ψout⟩ ± ei ϕ2 |ψin⟩). 若相应地令初

态 |ψinit⟩ =
1√
2N

( N∑
i=1

|0, i⟩ ± eiϕ
N∑
i=1

|i, 0⟩
)

, 则

|τ0⟩ = |ψinit⟩ + O(
√
ε). ϕ值的连续变化使得特

征值可以取单位圆上的任意值, 从而能够通过调整
ϕ的值使得U0,R的特征值和U0,L的相同

[21].
上述结论要求将图以某个节点为界分为两部

分, 搜索算法将状态从初态所在的一侧 “翻转”至
目标态所在的一侧. 不同于星图的叶节点, 完全图
KN的顶点度为N − 1. 直观上, 这不符合要求. 考
察在量子自同构A下的坍缩图, 则以点 c为界分为

左右两部分, 两部分仅通过点 c相连, 如图 4 (b)所
示. 初态可以用右侧自环边对应的状态 |ψC⟩近似
表示,

|ψinit⟩ =
1√

N(N − 1)

N∑
i=1

N∑
j=1,j ̸=i

|i, j⟩

= |ψC⟩+O(
√
ε).

若终态 |ψfinal⟩近似为 |ψL⟩和 |ψR⟩的组合, 则可以
接近1的概率测得目标顶点.

 

G
 

 

N

(a) (b)

c


G

图 4 (a)顶点 1连接图G的星图, 虚线将图分为左右两
部分; (b) 顶点 1连接图G的完全图KN 的坍缩图, 虚线
将坍缩图分为左右两部分

Fig. 4. (a) A star graph with graph G attached to ver-
tex 1 is divided into two parts by dashed line; (b) the
collapsed graph of complete graph KN with graph G

attached to vertex 1 can also be divided into two parts.

4.2 完全图上的结论

使用 (1)式定义的演化算子搜索完全图连接图
G的异常, 有以下结论.

定理1 若完全图上存在连接到图G的结构

异常, 则无论G的结构如何均可从初态 |ψinit⟩ =

|ψC⟩ + O(
√
ε)出发, 在O(

√
N)时间内搜索到目标,

成功概率为1−O(
√
ε).

证明 由文献 [21]的结论可知, 关键是要证明
无论G的结构如何在N → ∞时U0,R和U0,L一定

存在相同的特征值.
状态 |ψL⟩, |ψR⟩和 |ψC⟩ 定义同 (2)—(4)式, 首

先考察U(0) 在基 {|ψG⟩, |ψL⟩, |ψR⟩, |ψC⟩}(|ψG⟩表
示图G对应的基态)下的形式. 点 1和 c将图分

为三部分, 则U(0)一定可以表示为有 3 个分块
的对角阵. 以点 c为界, 坍缩图上右侧的反射系
数 rAR = 1 − 2ε, 左侧的反射系数 rAL = 2ε − 1,
透射系数 tA = ±2

√
ε− ε2. 则在 ε → 0时的

080302-6

http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn


物 理 学 报 Acta Phys. Sin. Vol. 65, No. 8 (2016) 080302

U(0) =


UG

0 −1

−1 0

1

, UG表示算子U(0)

作用于图G的部分. 图 4 (b)右侧对应 1阶矩阵
U0,R = (1), 其惟一的特征值为λ0 = 1, 特征

向量 |τ0⟩ = |ψC⟩. U0,L =


UG

0 −1

−1 0

, 其

特征多项式 |λI − U0,L| = |λI − UG| ·

∣∣∣∣∣∣λ 1

1 λ

∣∣∣∣∣∣ =

(λ2 − 1)|λI −UG|, 即保证U0,L有特征值为 1的特
征向量 |ι0⟩, 且 |ι0⟩ =

1√
2
(|ψL⟩ − |ψR⟩ + 0 · |ψG⟩),

即 |ι0⟩可以仅用完全图中的状态表示, 而与图G的

结构无关. 以下的计算仅考虑U作用于完全图的

部分.
算 子U(ε)成 对 出 现 的 特 征 值 λ± =

λ0 e±ic
√
ε + O(ε) = e±ic

√
ε + O(ε). 记U(ε) =

U(0) +
√
εA1 + · · · , 由在坍缩图中 tA = 2

√
ε− ε2,

可得A1 =


0 0 2

0 0 0

0 2 0

, 则 c = lim
ε→0

1√
ε
|⟨ι0|U |τ0⟩| =

|⟨ι0|A1|τ0⟩| =
√
2, λ± = e±i

√
2ε + O(ε). 对应

的特征向量 |v±⟩ =
1√
2
(∓i|ι0⟩ + |τ0⟩) + O(

√
ε) =

1√
2

(
∓ i√

2
± i√

2
1

)T
+O(

√
ε).

算法的初态 |ψinit⟩ = |ψC⟩ + O(
√
ε) =

1√
2
(|v+⟩ + |v−⟩) + O(

√
ε), 令 θ =

√
2ε, 则m步

之后算法的终态:

|ψfinal⟩ =
1√
2
Um(|v+⟩+ |v−⟩) +O(

√
ε)

=
1√
2
( eimθ|v+⟩+ e−imθ|v−⟩) +O(

√
ε)

=
1√
2


− i√

2
( eimθ − e−imθ)

i√
2
( eimθ − e−imθ)

eimθ + e−imθ

+O(
√
ε)

=


−i sin(mθ)

i sin(mθ)
√
2 cos(mθ)

+O(
√
ε).

当mθ =
π

2
, 即m = O(

√
N)时测量终态

|ψfinal⟩, 落在与目标顶点相连的边上的概率为
1−O(

√
ε).

证毕.
完全图连接外接图G的结构异常, 目标顶点的

度为N ,当N ≫ 1时 ⟨ψR|U |ψL⟩ = −1+O(
√
ε),在

目标顶点处近似为全反射, 状态中仅有极小的一部
分会扩散到图G中, 算法基本在完全图上演化, 因
而可以在完全图的坍缩图上讨论算法的演化过程.

5 结 论

本文借助坍缩图理论, 将星图上的分析结论
加以推广, 证明该结论有更广泛的适用性. 在
此基础上, 证明完全图上存在连接到图G的结

构异常, 则此时无论G的形式如何均可从初态

|ψinit⟩ = |ψC⟩ + O(
√
ε)出发, 在O(

√
N)时间内搜

索到目标, 成功概率为1−O(
√
ε).

最初提出的Grover算法 [23]实现成功概率小

于 1的近似搜索, 文献 [24]改进其相位反转算子将
其成功概率提高为 1. 均值反演算子G(即Grover
算子)执行关于所有节点叠加的反射, 需要一次访
问到所有节点, 其在量子行走模型下对应完全图上
的行走. Grover 算法已被证明是最优的 [25], 可以
推断基于量子行走的完全图上搜索算法的下界为

O(
√
N). 而迄今所有的研究证实, 二次加速是利用

量子并行性搜索无结构数据所能达到的最好结果.
本文仅考虑完全图上连接到图G的情况, 若完

全图内部出现异常, 如边的缺失或冗余, 则演化算
子具有不同的形式, 不能直接应用上述结论, 这是
我们下一步的研究内容. 另外研究文献 [20]的方法
是否可用于其他图结构上的搜索算法分析也是极

富意义的.
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Abstract
Quantum walks have been proven to be a useful framework in designing new quantum algorithms, of which the

search algorithm is the most notable. Besides a general search for a special vertex, recent researches have shown that
quantum walks can also be used to find structural anomalies. Suppose a vertex of complete graph KN is attached to a
second graph G, then the kind of structure anomaly will break the symmetry of the complete graph. The search algorithm
based on scattering quantum walk model is presented to speed up locating this kind of structure anomaly. The concepts
of scattering quantum walk model and collapsed graphs are presented. The definition of the evolutionary operator,
which is different from that of a general search, is given. Based on the specific definition of evolutionary operator and
the obvious symmetry of complete graph, it is shown that the search space is confined to a low-dimensional collapsed
space, and the initial state is chosen to lie in this subspace. To illustrate the evolutionary process of the search algorithm,
an example is given in the case that G is a single vertex. Taking advantage of our earlier study on the evolutionary
operator of coined quantum walks with Grover coin, calculations of the unitary operator in the collapsed space are greatly
simplified. To quantify the evolutionary process of the algorithm, we use the matrix perturbation theory involving a
perturbative approach to find the eigenvalues and eigenstates. It is the degenerate zeroth-order eigenvalue λ0 = 1 that
leads to the interesting parts of the Hilbert space. Most of the recent researches of searching the structure anomalies
focus on star graph SN with an unspecified graph G attached to one of its external vertices, where the overall graph is
divided into two parts by the central vertex. It is shown that quantum speedup will occur if and only if the eigenvalues
associated with these two parts in the N → ∞ limit are the same. In this paper, we find that the collapsed graph of
complete graphs can also be divided into two parts by a single collapsed vertex. As these two parts roughly correspond
to the initial state and the desired state respectively, the techniques and results in star graphs can be generalized to the
collapse graph on complete graph. What is more, under our definition of unitary evolution operator these two parts in
the N → ∞ limit will always share the same eigenvalue, i.e. λ0 = 1, no matter what the structure of graph G is. Based
on this, we prove that the search algorithm can find the target vertex in O(

√
N) time steps with a success probability of

1−O(1/
√
N). That is to say, the quantum search algorithm gains a quadratic speedup over classical counterpart.
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