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Fig. 1. The structure of array-to-point optical communication.
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Fig. 2. (a) Random signal; (b) demodulation without
turbid media and noise; (¢) demodulation with turbid

media and noise.
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Fig. 3. (a) Binary signal; (b) demodulation without
turbid media and noise; (¢) demodulation with turbid

media and noise.
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media and noise.
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dom signal without turbid media and noise; (c) binary
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turbid media and noise.
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Abstract

Free space optical-communication (FSO) has gained significant importance due to its unique features: large band-
width, license free spectrum, high data rate, easy and quick deployability, less power and low mass requirement. However,
the performance of FSO is degraded in the turbid and turbulent atmosphere, dramatically. Various techniques are pro-
posed to cope with the turbid media and turbulence in atmosphere, e. g. aperture averaging, diversity, adaptive optics,
modulation and coding and orbital angular momentum. However, in the above systems with point-to-point optical
communication structure, there exist obvious drawbacks or they are complex and expensive, and thus difficult to use in
practice. In this article, array-to-point optical communication (APOC) with good performance in turbid and turbulent
atmosphere is demonstrated. The strongly disturbed communication channel can be expressed as a circular complex
Gaussian transmission matrix, and the transmitted field is described as a linear combination of the fields coming from
different and independent segments of the digital micro-mirror device (DMD), so that the cross terms are averaged on the
surface of bucket detector. Instead, the contributions of all segments for each light field nearly becomes equally weighted.
Turbulence and other noises are reduced for the incoherence with sampling matrix based on the second-order correlation
which has widely been used in ghost imaging and LIDAR. Consequently, narrow-band optical filter is not required at the
receiver. The decoding algorithm is a new signal processing strategy from information technology, compressed sensing,
which discards low frequency components in sampling process and recovers the signal by conducting convex optimization.
Numerical simulations and experiments with binary and multi-bits level signals are demonstrated to show that the bit
error rate of the proposed method APOC is approximately 10~%-1072, which is feasible for the optical communication in
such complex communication channels. The communication rate, limited by the frequency of the DMD and the sampling
rate of the receiver, could reach hundreds of kbit/s, and with improved technology a rate of Mbit/s should be attainable.
This proposed APOC could realize optical communication in turbid and turbulent atmosphere and thus offers a very

effective approach to promoting the implementation in military and rescue.
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