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Fig. 1. The dynamical model of the linear fractional

system that excited by the base excitation.

2.1 FRHTRE

LA U A R SZ B r(t) = Rcos(wt) I,
Horr R A w 73 A28~ URD OWRAE AR AR 2t
ARG BRI, BOTRE (1) RN

z(t) = X cos(wt — ). (3)
3 (3) AN (1) 3, FFARAE SR [22], [23] Y25
dfz P
@—prcos <wtcp+2> (4)
A
dfr P
T Rw? cos (wt + 2), (5)

i IS E RBUES B R GAER LB T I

X=R

2 2
(k + pwP cos p;) + <cw + pwP sin p;)

2 2
T T
(k‘ — mw? + pwP cos p2> + (cw + pwP sin p2>

mw? (

cw + pwP sin p;t)

)

( = arctan

W X REB7R B J34% 3 2 8, W] DL WAl il 5
ISR 252 T DL SRRl A 1E
SZWUAN r(t) = Rsin(wt) I, F AR 5087777545

: (6)
2
cw ~+ pwP sin p;’c) + <k — mw? + pwP cos p;’() (k + pw? cos p;()
BI) 22 G0 S PRI BA A N
z(t) = X sin(wt — @), (7)

b X o 45 (6) 33w,

084501-2


http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn

Y18 Z R  Acta Phys. Sin.

Vol. 65, No. 8 (2016) 084501

2.2 HEMRE

A5 B I T i 7y 81 £ HEL o 2R ) O v T
PASRAT 2R GEma BAE SR w AEIEAE F BB A, A1

X = /X2 T X2, ®)

b X F1 X 73 990 3 7 3 G B AE SR w AR I IE
ZARA R, HREBEOY
iT
X = 3 x(t) sin(wt)dt,
0

il
9 [T
X. = z'T/O x(t) cos(wt)dt, (9)

Forpr i NIEHERL i BRAIAE 2 A 51 S A 2 i 2
XPRUETHR A RO, —AREAE RGNS E L
JE AT oA AEASCEBUE O B R R
i I B 80, BIEX 100 AN FA A, 48 )5 # i v 20 /4
JE 90 A5 F 3 4 1 80 A J TR Sy R 2 e 97 F B i)
FF 4.

T RS (1), FH > 38 Griinwald-
Letnikov & AT B HE, deilta 1K, #EA7ik
RATRAG (t). 1E 2 (t) W 2 IES: H o Bl S 87 AE
2AE T, BB BT INC &R

de? dr datp
@@x(t) = Wl’(t)

HEAT ML T 2124200 4 55 (1) BTN

dPx(t)
aw Y
di-r
0 ),
dz(t) 1 dr
| hett) - o) - w0+
+ kr+ M(;::] . (10)
R (10) MRS (1) ZEFUr 0. £ S HHE

(2) W, 4

wf?’ = (-1y (p_ ) ,
J

UEs)
d};ﬁff) _ % iw](-p)x(nh _n). A
RN BT 2 .
dz,(f) =y(t),

% S wPa(nh - jh) =yln - DA (12)

=0
% n = Npy, Tn = x(tn)v y(n):y(tn)a 4ﬁA(12) ﬁ’

/4
&

I

w((]p)xn + Zw](»p)xn,j = hPyp_1. (13)
j=1

HE4R Sk [20], w52

w((,p):l7
p+1
o = (15 )ity

PRIk, FEFRIRFAT T

n—1
Ty = —Zw](-p)xn_j + hPy, 1. (15)
j=1

W p = LR, AT DA 5

wgl) =—1,

w=0, j=23,-,n-1,  (16)
eI 73 B ks ST AL 9 H L) Euler 5%, JE LA
Earr, #5328 (10) EHEALEI TR

n—1
Tp = — Z wj(‘p)xn—j + hpyn—lv
j=1

n—1
1— _
Yn = — Zw]( p)yn—j + ht P -1,
j=1

n—1 h
1
Zp = — E w]( )xn—j + E < — kxn_1 — CZp—1
j=1

dr
— HYn—1 +c— + k‘Tn,1

dt

n—1

nl). (17)

B 2 25 T LA 0D O AR SE U I RS DL T &
GRme N RFE. FEE 2 (a) BT =4 R I, 24
p WIMET B 1IN, RGN (8 J) 4% 38 R B 1K,
X0 73 i 1 2K BELJE B A 2R A FE B g %
SRS E KKIRNE. K2 (b)—(d) 2algad 1 p
A [RMEL I Bl 3 1% 338 28 S50 0 gt A it 5 AOIEL e R 36F
bb. 1 2 %W, PR GE RAF S, R TR A
ANEAE T3 9 0 IE R 1.

dPr
N

084501-3


http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn

) I % R Acta Phys. Sin.

Vol. 65, No. 8 (2016) 084501

X/R

(c) p=1.0

8

(b) p=0.5

X/R

(d)p=15

K2 (WP ) SRR A % 2 R G B 3 )t R4 T E S8 m =5,k =10, ¢c=05, p=1.5
(a) B0 RERNTE R =L4EETY; (b) p = 0.5 BYAUBI MR8 RELG () p = 1L.OWHIBIIMESE REG (d) p=1.5

I 1930 7 13 2R 3

Fig. 2. (color online) The dynamic transfer coefficient of the system that under the cosine base excitation,

the simulation parameters are m = 5, k = 10, ¢ = 0.5, u = 1.5: (a) The three-dimensional curve of the

dynamic transfer coefficient obtained by the analytical result; (b) the dynamic transfer coefficient for the

case p = 0.5; (c) the dynamic transfer coeflicient for the case p = 1.0; (d) the dynamic transfer coefficient

for the case p = 1.5.
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Fig. 3. The dynamic transfer coefficient of the system that under the full sine base excitation, the simulation
parameters are m = 5, k = 10, ¢ = 0.5, p = 1.5: (a) The dynamic transfer coefficient at the fundamental
frequency for the case p = 0.5; (b) the dynamic transfer coefficient at the second harmonic frequency for
the case p = 0.5; (c¢) the dynamic transfer coefficient at the fundamental frequency for the case p = 1.0;
(d) the dynamic transfer coefficient at the second harmonic frequency for the case p = 1.0; (e) the dynamic

transfer coefficient at the fundamental frequency for the case p = 1.5; (f) the dynamic transfer coefficient at
the second harmonic frequency for the case p = 1.5.
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Fig. 4. The dynamic transfer coefficient of the system that under the square base excitation, the simulation
parameters are m = 5, k = 10, ¢ = 0.5, p = 1.5: (a) The dynamic transfer coefficient at the fundamental

frequency for the case p = 0.5; (b) the dynamic transfer coefficient at the second harmonic frequency for

the case p = 0.5; (c¢) the dynamic transfer coeflicient at the fundamental frequency for the case p = 1.0;

(d) the dynamic transfer coefficient at the second harmonic frequency for the case p = 1.0; (e) the dynamic

transfer coefficient at the fundamental frequency for the case p = 1.5; (f) the dynamic transfer coefficient at

the second harmonic frequency for the case p = 1.5.
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Fig. 5. The dynamic transfer coefficient of the system that under the triangular base excitation, the simula-
tion parameters are m = 5, k = 10, ¢ = 0.5, p = 1.5: (a) The dynamic transfer coefficient at the fundamental

frequency for the case p = 0.5; (b) the dynamic transfer coefficient at the second harmonic frequency for

the case p = 0.5; (c¢) the dynamic transfer coefficient at the fundamental frequency for the case p = 1.0;

(d) the dynamic transfer coefficient at the second harmonic frequency for the case p = 1.0; (e) the dynamic

transfer coefficient at the fundamental frequency for the case p = 1.5; (f) the dynamic transfer coefficient at

the second harmonic frequency for the case p = 1.5.
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Abstract

We investigate the response property of a linear system that is excited by the base excitation. The linear system
contains the ordinary damping or the fractional-order damping. In our studies, the base excitation is in the harmonic
form or in the general periodic form. When the base excitation is in the harmonic form, we obtain the dynamic
transfer coefficient by the undetermined coefficient method. When the base excitation is in the general periodic form,
we first expand the excitation into the Fourier series, then, according to the linear superposition principle, we obtain the
dynamic transfer coefficient that is induced by each harmonic component in the excitation. By expanding the general
periodic excitation into the Fourier series, we can solve the non-differentiable problem that is induced by the periodic
base excitation for the numerical calculations. Based on the Griinwald-Letnikov definition, the discretization formula
for the fractional-order system is obtained explicitly. The analytical results are in good agreement with the numerical
simulations, which verifies the validity of the analytical results. Both the analytical and the numerical results show that
the dynamic transfer coeflicient depends on the fractional-order of the damping closely. The dynamic transfer coefficient
can be controlled by tuning the value of the fractional-order. For the general periodic excitation, when the frequency
is fixed, the dynamic transfer coefficient that is induced by the high-order harmonic component may be stronger than
that induced by the low-order harmonic component in the base excitation. Hence, the effect of the high-order harmonic
component in the excitation cannot be ignored although its amplitude is small. Further, when the base excitation is
in the full sine form, or the square form, or the triangular form, the response property of the system can be described
by center frequency, resonance peak, cutoff frequency, and the filter bandwidth. For a fixed fractional-order, the center
frequencies of each order corresponding to the response, obtained by the three kinds of the periodic base excitations
mentioned above, are identical. However, the corresponding resonance peaks are different. The resonance peak and the
filter bandwidth are both maximal when the base excitation is in the square form. The resonance peak and the filter
bandwidth are both minimal when the base excitation is in the triangular form. We believe that our results are useful

for solving the vibration problem in the engineering field such as the vibration isolation and the vibration control.
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