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本文研究了基础激励下含分数阶阻尼的线性系统的响应特性. 当基础激励为简谐激励时, 通过待定系数
方法求得系统的动力传递系数; 当基础激励为非简谐周期激励时, 首先将激励展开成傅里叶级数, 然后根据线
性系统的叠加原理求得激励中各阶频率成分所引起的动力传递系数, 并根据展开的傅里叶级数解决了数值运
算中的不可导问题. 用数值仿真的方法对解析结果进行了验证, 两者符合良好, 证明了解析分析的正确性. 研
究表明, 基础激励引起的动力传递系数依赖于分数阶阻尼阶数的值, 通过调节阻尼阶数可以控制动力传递系
数的大小. 对于基础激励为非简谐的周期激励情况, 当激励频率一定时, 激励中的高阶频率成分引起的动力
传递系数可能大于激励中的低阶频率成分引起的动力传递系数. 因此, 激励中的高阶频率成分所起的作用是
不可忽略的.

关键词: 分数阶微积分, 基础激励, 动力传递系数
PACS: 45.10.Hj, 33.20.Tp DOI: 10.7498/aps.65.084501

1 引 言

1695年, 德国数学家Leibniz和法国数学家
L’Hôpital首先提出了分数阶微积分的概念, 至今
已有三百多年的发展历史. 近年来, 分数阶微积
分已成为研究反常扩散、多孔介质力学、非牛顿

流体力学、黏弹性力学、软物质物理等学科领域

的有力数学工具, 因此分数阶微积分被一些学者
称为 21世纪的前沿科学 [1]. 随着分数阶微积分理
论在各门学科中的不断应用, 分数阶系统的响应
问题成为目前的研究热点. 例如, Achar等 [2]在专

著中探讨了分数阶振子的响应特性; Deng等 [3,4]

给出了一种数值计算分数阶微分方程的有效算

法, 同时进行了误差分析; Shen等 [5,6]研究了简谐

激励下分数阶Duffing系统、分数阶 van der Pol
系统 [7]的响应特性; Rostami和Haeri [8]研究了欠

阻尼形式的分数阶Duffing系统的自由响应特性;
Litak和Borowiec [9]研究了随机噪声激励下分数阶

Duffing系统的随机谐振响应特性; Yang等研究了
含有不同非线性项的分数阶系统的分岔与共振问

题 [10−13], 并研究了不同周期激励下分数阶线性系
统的响应问题 [14]; Chen等 [15−17]研究了随机激励

下分数阶系统的稳定性问题. Xu等 [18]对黏弹性材

料采用分数阶导数进行建模, 并采用多尺度法研究
了系统的跳跃及分岔行为; Baleanu等 [19]研究了分

数阶非线性Bloch方程的混沌响应特性.
目前已有的文献, 对分数阶系统受迫响应的分

析多限制在外激励直接作用于研究对象的情形, 对
于外激励是基础激励的情形研究较少. 然而, 基础
激励广泛存在于不同的物理模型中. 因此, 本文着
重研究不同形式的基础激励所引起的分数阶线性

系统的响应问题. 本文第 2部分用待定系数法求解
基础激励为简谐力时系统响应的动力传递系数的

∗ 国家自然科学基金 (批准号: 51305441)和江苏省高校优势学科建设工程资助的课题.
† 通信作者. E-mail: jianhuayang@cumt.edu.cn
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表达式; 第 3部分根据傅里叶级数和线性系统的叠
加原理求解非简谐周期激励下系统的动力传递系

数, 并对前两阶简谐分量引起的动力传递系数进行
数值验证和分析; 第4部分给出本文的结论.

2 简谐激励下系统的响应特性

研究如图 1所示的动力学模型, 其中 r(t)表示
基础激励, c和µ分别为常规线性阻尼器和具有分

数阶导数形式阻尼器的阻尼系数, k 为线性弹簧的
刚度系数. 用磁流变液、橡胶等黏弹性材料制成的
阻尼器均可利用分数阶导数进行建模. 这类阻尼器
产生的阻尼力大小为F = µ

dpx̄

dtp , x̄表示阻尼器发

生的相对位移, dpx̄

dtp 表示对相对位移求p阶导数, p

是介于 (0, 2)之间的任意数, 其具体取值视阻尼器
的具体材料而定. 运用牛顿第二定律, 对图 1所示
的系统列方程得到

m
d2x

dt2 + c
d
dt(x− r) + µ

dp

dtp (x− r)

+ k(x− r) = 0. (1)

关于分数阶导数有不同的定义方式, 常见的定
义有Grünwald-Letnikov定义, Riemann-Liouville
定义, Caputo定义等 [20,21]. 这三种定义之间既
有区别又有联系, 在某些情况下相互等价 [22]. 为方
便数值计算, 在方程 (1)中采用Grünwald-Letnikov
定义, 该定义的具体描述为

dpf(t)

dtp |t=kh

≈∆p
hf(t)|t=kh

= lim
h→0

1

hp

n∑
j=0

(−1)j

p

j

 f(nh− jh), (2)

其中h是数值计算的时间步长.

k

m

x↼t↽

r↼t↽

cµ

图 1 基础激励下分数阶线性系统的动力学模型

Fig. 1. The dynamical model of the linear fractional
system that excited by the base excitation.

2.1 解析解

当基础激励为余弦激励 r(t) = R cos(ωt)时,
其中R和ω分别表示激励的幅值和频率. 根据线性
系统受迫响应的特性, 设方程 (1)的解为

x(t) = X cos(ωt− φ). (3)

把 (3)式代入 (1)式, 并根据文献 [22], [23]中的公式
dpx

dtp = Xωp cos
(
ωt− φ+

pπ

2

)
(4)

和

dpr

dtp = Rωp cos
(
ωt+

pπ

2

)
, (5)

使用待定系数法得到系统在余弦激励下的解为

X = R

√√√√√√√√
(
k + µωp cos pπ

2

)2

+

(
cω + µωp sin pπ

2

)2

(
k −mω2 + µωp cos pπ

2

)2

+

(
cω + µωp sin pπ

2

)2 ,

φ = arc tan
mω2

(
cω + µωp sin pπ

2

)
(
cω + µωp sin pπ

2

)2

+

(
k −mω2 + µωp cos pπ

2

)(
k + µωp cos pπ

2

) . (6)

用X/R表示动力传递系数, 可以表明基础激励引

起的运动传递到受力对象的情况. 当基础激励为正

弦激励 r(t) = R sin(ωt)时, 利用相同的分析方法得

到系统响应的近似解为

x(t) = X sin(ωt− φ), (7)

其中X和φ仍由 (6)式表示.
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2.2 数值仿真

使用计算时间响应序列傅里叶系数的方法可

以求得系统响应在频率ω处幅值的数值解, 即

X =
√
X2

s +X2
c , (8)

其中Xs和Xc分别表示系统响应在频率ω处的正

弦与余弦傅里叶分量, 其表达式为

Xs =
2

iT

∫ iT

0

x(t) sin(ωt)dt,

Xc =
2

iT

∫ iT

0

x(t) cos(ωt)dt, (9)

其中 i为正整数. 为消除初始条件引起的瞬态响应
对数值计算结果的影响, 一般要在系统响应稳定之
后再运行 i个周期. 在本文数值仿真计算的过程中,
i的值取为 80, 即取 100个周期, 然后截掉前 20个
周期后使用剩余的 80个周期作为稳态响应的时间
序列.

对于系统 (1), 利用分数阶导数的Grünwald-
Letnikov定义进行离散, 选取恰当的步长, 进行迭
代可求得x(t). 在x(t)满足连续且分数阶导数存在
的条件下, 运用分数阶算子的叠加关系

dq

dtq
dp

dtpx(t) =
dq+p

dtq+p
x(t)

进行降维处理 [21,24−26], 将系统 (1)变形为
dpx(t)

dtp =y(t),

d1−py(t)

dt1−p
=z(t),

dz(t)
dt =

1

m

[
− kx(t)− cz(t)− µy(t) + c

dr
dt

+ kr + µ
dpr

dtp

]
. (10)

系统 (10)和系统 (1)是等价的. 在分数阶导数的定
义 (2)式中, 令

w
(p)
j = (−1)j

p

j

 ,

则有

dpx(t)

dtp =
1

hp

n∑
j=0

w
(p)
j x(nh− jh). (11)

代入离散方程

dpx(t)

dtp = y(t),

可得

1

hp

n∑
j=0

w
(p)
j x(nh− jh) = y[(n− 1)h]. (12)

令 tn = nh, xn = x(tn), y(n)=y(tn), 代入 (12)式,
可得

w
(p)
0 xn +

n∑
j=1

w
(p)
j xn−j = hpyn−1. (13)

根据文献 [20], w(p)
j 满足

w
(p)
0 = 1,

w
(p)
j =

(
1− p+ 1

j

)
w

(p)
j−1,

j = 1, 2, · · · (14)

因此, 在零初始条件下有

xn = −
n−1∑
j=1

w
(p)
j xn−j + hpyn−1. (15)

当p = 1时, 可以得到

w
(1)
1 = −1,

w
(1)
j = 0, j = 2, 3, · · · , n− 1, (16)

此时分数阶运算简化为常规的Euler算法. 基于以
上分析, 得到 (10)式离散化的方程为

xn =−
n−1∑
j=1

w
(p)
j xn−j + hpyn−1,

yn =−
n−1∑
j=1

w
(1−p)
j yn−j + h1−pzn−1,

zn =−
n−1∑
j=1

w
(1)
j xn−j +

h

m

(
− kxn−1 − czn−1

− µyn−1 + c
dr
dt

∣∣∣∣
n−1

+ krn−1

+ µ
dpr

dtp

∣∣∣∣
n−1

)
. (17)

图 2给出了基础激励为余弦激励的情况下系
统响应的特性. 在图 2 (a)所示的三维图中发现, 当
p的值远离 1时, 系统响应的动力传递系数会增大,
这说明分数阶形式的阻尼比常规的线性阻尼能够

引起系统更大的振幅. 图 2 (b)—(d)分别给出了 p

取不同值时动力传递系数的解析解与数值解的对

比. 图 2表明, 两种结果符合较好, 证明了解析方法
和数值方法的正确性.
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图 2 (网刊彩色) 基础激励为余弦形式时系统响应的动力传递系数, 仿真参数为m = 5, k = 10, c = 0.5, µ = 1.5
(a)动力传递系数解析结果的三维图形; (b) p = 0.5时的动力传递系数; (c) p = 1.0时的动力传递系数; (d) p = 1.5
时的动力传递系数

Fig. 2. (color online) The dynamic transfer coefficient of the system that under the cosine base excitation,
the simulation parameters are m = 5, k = 10, c = 0.5, µ = 1.5: (a) The three-dimensional curve of the
dynamic transfer coefficient obtained by the analytical result; (b) the dynamic transfer coefficient for the
case p = 0.5; (c) the dynamic transfer coefficient for the case p = 1.0; (d) the dynamic transfer coefficient
for the case p = 1.5.

3 非简谐周期激励下系统的响应特性

对于任意的非简谐周期激励F (t), 通过待定系
数法不能直接求得系统相应的解, 可将原激励展开
成傅里叶级数后利用线性系统的叠加原理来解决

这一问题. 从原则上讲, 如果基础激励存在不可导
的点, 则不能使用 (1)式进行建模, 也不能使用 (10)
式进行数值计算. 将非简谐的周期激励展开成傅
里叶级数, 由于傅里叶级数中每一项都是处处可导
的, 这就将基础激励由不可导变为可导, 仍能够使
用 (1)式及 (10)式. 任意非简谐的周期函数F (t)展
开为傅里叶级数为

F (t) =
a0
2

+

∞∑
n=1

[an sin(nωt)

+ bn cos(nωt)], (18)

其中傅里叶级数的系数a, an, bn分别为

a0 =
1

T

∫ T/2

−T/2

F (t)dt,

an =
2

T

∫ T/2

−T/2

F (t) sin(nωt)dt

(n = 1, 2, 3, · · · ),

bn =
2

T

∫ T/2

−T/2

F (t) cos(nωt)dt

(n = 0, 1, 2, 3, · · · ), (19)

式中ω = 2π/T , 其中T为周期. 根据线性系统的叠
加原理, 将 (18)式中各阶谐波激励引起的响应进行
叠加, 即可得到系统响应的解析解. 下面以周期全
波正弦激励、周期方波激励、周期三角波激励为例
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进行说明与验证. 在文献 [14]中进行数值运算时不
需要对周期激励进行求导, 然而根据 (17) 式, 在处
理本文模型响应的数值运算问题时涉及对周期激

励的求导问题. 有些形式的非简谐周期函数的导数
是存在的, 比如三角波、周期全波正弦函数等. 除此
之外, 还有一些形式的非简谐周期函数存在大量的
不可导点, 比如方波函数等, 这类函数不能直接求
导, 需要进一步的处理. 本文采用将周期激励展开
成傅里叶级数的方法, 然后对展开的傅里叶级数前
10项进行求导运算, 将得到的值作为不可导的周期
激励在某一时刻导数的近似值.

3.1 周期全波正弦激励引起的响应

周期全波正弦激励的表达式为

r(t) = R

∣∣∣∣ sin
(
ωt

2

)∣∣∣∣, (20)

将 (20)式展开成傅里叶级数为

r(t) =R

∣∣∣∣ sin
(
ωt

2

)∣∣∣∣

=
2R

π
− 4

π

∞∑
n=1

n

4n2 − 1
R cos(nωt). (21)

根据线性系统的叠加原理, 周期全波正弦激励引起
的响应可用 (21)式中常值分量及余弦分量引起的
响应叠加得到. 首先求出常值分量引起的系统响
应, 根据方程

m
d2x

dt2 + c
d
dt

(
x− 2R

π

)
+ µ

dp

dtp

(
x− 2R

π

)
+ k

(
x− 2R

π

)
= 0, (22)

得到系统响应的常值分量为

x0 =
2R

kπ
. (23)

根据 (6)式与 (23)式的结果, 利用线性系统的叠加
原理可得周期全波正弦激励引起的响应为

x(t) =
2R

kπ
− 4

π

∞∑
n=1

n

4n2 − 1

× Zn cos(ωnt− φn), (24)

其中ωn = nω, 且

Zn =R

√√√√√√√√
(
k + µωP

n cos pπ
2

)2

+

(
cωn + µωP

n sin pπ

2

)2

(
k −mωn + µωP

n cos pπ
2

)2

+

(
cωn + µωP

n sin pπ

2

)2 , (25)

φn = arctan
mω2

n

(
cωn + µωP

n sin pπ

2

)
(
cωn + µωP

n sin pπ

2

)2

+

(
k −mω2

n + µωP
n cos pπ

2

)(
k + µωP

n cos pπ
2

) , (26)

Xn =
4

π

n

4n2 − 1
Zn 表示第n 阶谐波分量的幅值,

φn表示第n阶谐波分量的滞后相位角, 则Xn/R表

示第n阶响应的动力传递系数, 即
Xn

R
=

4

π

n

4n2 − 1

Zn

R
. (27)

图 3给出了周期全波正弦激励下 p = 0.5,
p = 1.0以及 p = 1.5时系统响应前两阶动力传
递系数的解析解与数值解, 两者的符合情况良好.
由图发现, 当分数阶导数阻尼的阶数较低时, 系统
的动力传递系数较大. 激励的第 2阶简谐分量引起
共振时, 激励的第 1阶简谐分量尚未引起共振, 这
可能使得系统响应在第2阶频率处的幅值大于其在
第 1阶简谐分量处的幅值. 因此, 对于非简谐的周
期激励, 高阶简谐分量引起的动力传递系数是不可

忽略的.

3.2 周期方波激励引起的响应

周期方波激励的表达式为

r(t) =

R, (2n− 2)π/ω < t < (2n− 1)π/ω,

−R, (2n− 1)π/ω < t < 2nπ/ω,

(28)

将其展开成傅里叶级数为

r(t) =
4

π

∞∑
n=1

1

2n− 1
R sin[(2n− 1)ωt]. (29)

利用叠加原理求得周期方波激励引起的响应为

x(t) =
4

π

∞∑
n=1

1

2n− 1
Zn sin(ωnt− φn), (30)
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图 3 基础激励为周期全波正弦形式时系统响应的前 2阶动力传递系数, 仿真参数为m = 5, k = 10, c = 0.5,
µ = 1.5 (a) p = 0.5 时基频响应的动力传递系数; (b) p = 0.5时第 2阶谐波响应的动力传递系数; (c) p = 1.0时
基频响应的动力传递系数; (d) p = 1.0时第 2阶谐波响应的动力传递系数; (e) p = 1.5时基频响应的动力传递系
数; (f) p = 1.5时第 2阶谐波响应的动力传递系数
Fig. 3. The dynamic transfer coefficient of the system that under the full sine base excitation, the simulation
parameters are m = 5, k = 10, c = 0.5, µ = 1.5: (a) The dynamic transfer coefficient at the fundamental
frequency for the case p = 0.5; (b) the dynamic transfer coefficient at the second harmonic frequency for
the case p = 0.5; (c) the dynamic transfer coefficient at the fundamental frequency for the case p = 1.0;
(d) the dynamic transfer coefficient at the second harmonic frequency for the case p = 1.0; (e) the dynamic
transfer coefficient at the fundamental frequency for the case p = 1.5; (f) the dynamic transfer coefficient at
the second harmonic frequency for the case p = 1.5.

其中ωn = nω, Zn和φn仍由 (25)式和 (26)式确定,
第n阶响应的动力传递系数为

Xn

R
=

4

π

1

2n− 1

Zn

R
. (31)

图 4给出了周期方波激励下系统响应的前 2阶
动力传递系数的解析解和数值解. 第 2 阶简谐分
量引起的响应共振区宽度明显小于第1阶简谐分量
引起的响应共振区宽度. 需要注意的是, 周期方波
激励在进行数值运算时不能直接在 (17)式中进行
求导, 需要将方波按 (18)式展开成傅里叶级数, 然
后选取傅里叶级数的前 10项进行近似的求导计算.

从数值仿真结果与解析结果的符合程度来看, 这种
近似的计算方法是合理的.

3.3 周期三角波激励引起的响应

周期三角波激励的表达式为

r(t) =


Rωt

π
, 0 6 t 6 π/ω

−Rωt

π
, π/ω 6 t 6 0

, (32)

将其展开为傅里叶级数为
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r(t) =
R

2
− 4

π2

∞∑
n=1

1

(2n− 1)2
R

× cos[(2n− 1)ωt]. (33)

利用叠加原理得到周期三角波激励引起的系统

响应为

x(t) =
R

2k
− 4

π2

∞∑
n=1

1

(2n− 1)2
Zn

× cos(ωnt− φn), (34)

其中ωn = nω, Zn和φn仍由 (25)式和 (26)式确定,
第n阶响应的动力传递系数为

Xn

R
=

4

π2

1

(2n− 1)2
Zn

R
. (35)

图 5给出了周期三角波激励下系统响应的前 2
阶动力传递系数的解析解和数值解, 两种结果符合
良好. 图形所反映的结论与周期全波正弦激励以及
周期方波激励引起的响应类似, 在此不再赘述.
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图 4 基础激励为周期方波形式时系统响应的前 2阶动力传递系数, 仿真参数为m = 5, k = 10, c = 0.5, µ = 1.5
(a) p = 0.5时基频响应的动力传递系数; (b) p = 0.5时第 2阶谐波响应的动力传递系数; (c) p = 1.0时基频响
应的动力传递系数; (d) p = 1.0时第 2阶谐波响应的动力传递系数; (e) p = 1.5 时基频响应的动力传递系数;
(f) p = 1.5时第 2阶谐波响应的动力传递系数
Fig. 4. The dynamic transfer coefficient of the system that under the square base excitation, the simulation
parameters are m = 5, k = 10, c = 0.5, µ = 1.5: (a) The dynamic transfer coefficient at the fundamental
frequency for the case p = 0.5; (b) the dynamic transfer coefficient at the second harmonic frequency for
the case p = 0.5; (c) the dynamic transfer coefficient at the fundamental frequency for the case p = 1.0;
(d) the dynamic transfer coefficient at the second harmonic frequency for the case p = 1.0; (e) the dynamic
transfer coefficient at the fundamental frequency for the case p = 1.5; (f) the dynamic transfer coefficient at
the second harmonic frequency for the case p = 1.5.
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图 5 基础激励为周期三角波形式时系统响应的前 2 阶动力传递系数, 仿真参数为m = 5, k = 10, c = 0.5,
µ = 1.5 (a) p = 0.5时基频响应的动力传递系数; (b) p = 0.5时第 2阶谐波响应的动力传递系数; (c) p = 1.0时
基频响应的动力传递系数; (d) p = 1.0时第 2阶谐波响应的动力传递系数; (e) p = 1.5时基频响应的动力传递系
数; (f) p = 1.5时第 2阶谐波响应的动力传递系数
Fig. 5. The dynamic transfer coefficient of the system that under the triangular base excitation, the simula-
tion parameters are m = 5, k = 10, c = 0.5, µ = 1.5: (a) The dynamic transfer coefficient at the fundamental
frequency for the case p = 0.5; (b) the dynamic transfer coefficient at the second harmonic frequency for
the case p = 0.5; (c) the dynamic transfer coefficient at the fundamental frequency for the case p = 1.0;
(d) the dynamic transfer coefficient at the second harmonic frequency for the case p = 1.0; (e) the dynamic
transfer coefficient at the fundamental frequency for the case p = 1.5; (f) the dynamic transfer coefficient at
the second harmonic frequency for the case p = 1.5.

在以上三种不同的周期激励下, 各阶动力传
递系数所表现出的异同点可以从中心频率 (即发生
共振时对应的激励频率)、共振峰值 (即发生共振时
动力传递系数所取得的最大值)、截止频率 (动力传
递系数为最大峰值的 1/

√
2倍时对应的激励频率)、

带宽 (两个截止频率之间的距离)四个指标进行对
比 [27]. 首先, 当分数阶阻尼的阶数 p确定后, 以上
三种不同周期激励下同一阶动力传递系数的中心

频率是一致的, 但共振峰值大小不同. 这个结论可
以从图 3 —图 5中直接得到, 也可以通过分析 (27),

(31), (35)式得到. 对于以上三种周期激励, 参考
(27), (31), (35)及 (25)式, 当第n阶动力传递系数

曲线发生共振时, (25)式取最大值即可. 因此, 当
系统参数m, c, k及p的值确定时, 以上三种激励下
动力传递系数发生共振时对应的ω值, 即中心频率
是一致的. 进一步, 当 (25)式取最大值时, 从 (27),
(31), (35)式发现三种不同的周期激励下共振峰值
大小不同. 周期方波激励下, 动力传递系数的共振
峰值最大; 周期三角波激励下, 动力传递系数的共
振峰值最小. 因此, 截止频率与带宽也不相同. 理
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论分析和数值模拟都说明, 当其他参数相同时, 周
期方波激励下, 动力传递系数的带宽最大; 周期三
角波激励下, 动力传递系数的带宽最小.

4 结 论

本文研究了基础激励下含分数阶阻尼的线性

系统的响应特性. 本文使用待定系数法求得了当基
础激励为简谐激励时系统响应的动力传递系数的

解析解, 并用数值仿真进行了验证. 当基础激励为
非简谐周期激励时, 首先将非简谐周期激励展开成
傅里叶级数, 根据线性系统的叠加原理求得系统的
响应. 采用将非简谐周期激励展开成傅里叶级数的
方法, 还能够解决数值运算中所遇到的某些非简谐
周期函数不可求导问题. 以周期全波正弦激励、周
期方波激励以及周期三角波激励为例, 对系统响应
的动力传递系数进行分析和仿真验证. 研究表明,
分数阶阻尼阶数的值会影响系统响应动力传递系

数的大小, 且分数阶阻尼引起的响应动力传递系数
可能会大于常规线性阻尼所引起的响应动力传递

系数. 当基础激励为非简谐周期激励时, 在外激励
频率一定时, 激励的第 2阶简谐分量引起的响应动
力传递系数可能会大于第1阶简谐分量所引起的响
应动力传递系数. 这说明在处理工程问题时, 激励
中含有的高阶简谐分量所引起的响应也是不可忽

略的. 基础激励广泛存在于各类工程问题中, 而且
基础激励所引起的系统响应比直接作用于受力对

象上的外激励所引起的系统响应更加复杂, 这是本
文研究的意义所在. 在实际工程问题中, 系统还表
现出非线性, 比如弹簧、阻尼等在一定条件下都具
有非线性特征. 基础激励下含有分数阶阻尼的非线
性系统响应特性是本文的后续研究工作.
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Abstract
We investigate the response property of a linear system that is excited by the base excitation. The linear system

contains the ordinary damping or the fractional-order damping. In our studies, the base excitation is in the harmonic
form or in the general periodic form. When the base excitation is in the harmonic form, we obtain the dynamic
transfer coefficient by the undetermined coefficient method. When the base excitation is in the general periodic form,
we first expand the excitation into the Fourier series, then, according to the linear superposition principle, we obtain the
dynamic transfer coefficient that is induced by each harmonic component in the excitation. By expanding the general
periodic excitation into the Fourier series, we can solve the non-differentiable problem that is induced by the periodic
base excitation for the numerical calculations. Based on the Grünwald-Letnikov definition, the discretization formula
for the fractional-order system is obtained explicitly. The analytical results are in good agreement with the numerical
simulations, which verifies the validity of the analytical results. Both the analytical and the numerical results show that
the dynamic transfer coefficient depends on the fractional-order of the damping closely. The dynamic transfer coefficient
can be controlled by tuning the value of the fractional-order. For the general periodic excitation, when the frequency
is fixed, the dynamic transfer coefficient that is induced by the high-order harmonic component may be stronger than
that induced by the low-order harmonic component in the base excitation. Hence, the effect of the high-order harmonic
component in the excitation cannot be ignored although its amplitude is small. Further, when the base excitation is
in the full sine form, or the square form, or the triangular form, the response property of the system can be described
by center frequency, resonance peak, cutoff frequency, and the filter bandwidth. For a fixed fractional-order, the center
frequencies of each order corresponding to the response, obtained by the three kinds of the periodic base excitations
mentioned above, are identical. However, the corresponding resonance peaks are different. The resonance peak and the
filter bandwidth are both maximal when the base excitation is in the square form. The resonance peak and the filter
bandwidth are both minimal when the base excitation is in the triangular form. We believe that our results are useful
for solving the vibration problem in the engineering field such as the vibration isolation and the vibration control.
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