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Fig. 1. Flow chart for multimaterial-multiphase code.

3 BUAL X R T A AL S (R A L
R

ATV T A P A AN [ 6 T LA R Y A
FCRIUREL 52 15 20Xt A B 1 1% 4k DL R RUIX Ui
YB3 AT R

3.1 HWEERBREGZE

TR AN 2 FT7R, 43 4 P TR R TE AR
P55 R AR A A . JOB-9003 X 24 K 84 (Fe)
B (Pb) €2, BH KA AR BRI Z R (He),
HARGER RS WA 1. YEZ ARG Y s %, 1
B G EE R AE SO, R S
T S T B AR O, BUEEY B v
g,

B3 45 T8y RZFTE DT RN 35 58, 4
BN E S m g, Hh P IR e )

084703-3


http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn

Y18 Z R  Acta Phys. Sin.

Vol

. 65, No. 8 (2016) 084703

WEfE 2 43 GPa, [AIFAEA phdi e JJIE{HZ) 51 GPa.
IR A R T S I K S R S N, RSP
AR50 us SN, FEIFEREAY 2.9 us 5L, 5

1R

Table 1. Sizes of computing models.

sy \ e 1L T BN ST R A2
FLRIYILE BB AR B EBCN 25 mg/em? Pl i Pk - o
NN ; y - o s . R z A iz
BEHCTR TR AR B Ay e A fom e
B A 15 f, RBUO IR gy 20200 033 25 a0
DN T WA 3 R o R ) o -3 B A L R W [=5.0,50] [3.5,3.8 2.2 2.5
SN ATBEE SR (2, 6, 10]. T BB, B W [£3.0,3.0 [3.8,4.0] 2.0 2.2
?E?‘Jﬁ1ﬁ$lﬁ%%, %E*ﬁi’“@ *E*E@E(JQ e [-5.0, —3.0] [3.8, 4.0] 0 2.0
PR R AS T REATFF 257, I IR 1A I ) 30,50 [, 401
A SR A 20, AR R A 50,50 [40, 100
W,
t=0.5ps
4
2
£ g
3] <0 He
E N
-2
-4 (b)
—4 -2 0 2 4
R/cm
2 IFHEBE (a) FiH; (b) B
Fig. 2. Computing models: (a) Plane configuration; (b) column configuration.
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Fig. 4. Numerical images of gas shock wave moving in the plane model.
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Fig. 5. Numerical images of gas shock wave moving in the column model.
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Fig. 6. Physical distributions of gas in the plane model: (a) Velocity; (b) pressure; (c) density; (d) temperature.
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Fig. 7. Physical distributions of gas in the column model: (a) Velocity; (b) pressure; (c) density; (d) temperature.
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Abstract

When an extreme shock wave releases from the free surface of the material, some high speed particulate matters
will be ejected from the material body and enter into the background gas. This induced multiphase mixing phenomenon
is known as the ejecta mixing. Ejecta mixing is one of the most important problems in the scope of inner explosive
compression engineering, and it is also a frontier research subject of the impact dynamics, multiphase fluid dynamics,
computational mathematics, etc. The properties of ejecta mixing have been investigated experimently and analytically
for many years. However, the results of numerical simuliation are very rare. At present, the ejecta mixing study mainly
focuses on the gas particle one-way coupling, that is, the interests of existing works are in the characteristics of the
ejected particulate matter transport in the gas. In fact, after a large number of particles entering into the gas, the
gas and the particles will interact with each other. So it is necessary to consider the feedback of particles to the gas.
In this paper, the theoretical modeling of gas particle two-way coupling, the discrete algorithm of the mathematical
model and the particle phase feedback effects on the gas shock wave propagation are investigated in the framework
of Lagrangian coordinates. In order to obtain the details of ejecta movement, the particle trajectory model is chosen
as the basic model, and then the governing equations including interactions between gas phase and particle phase are
derived. For giving the specific calculation formula, the physical meanings of the coupled interaction source terms in
the Lagrangian framework are analyzed and a stable numerical scheme is given based on the staggered strategy. We
also devise two different computing models of ejecta mixing, the planar and the column configurations, and then the
numerical simulations are carried out. The phenomenon of gas shock speed acceleration caused by particle feedback is
found, and the distributions of the physical quantities, such as density, velocity, specific internal energy, pressure, in the
gas area are changed. Especially for the convergent configuration, the feedback effects will be amplified further by the
geometrical shrinkage, which may have a significant influence on the performance of the inner explosion compression,
owing to the obvious uniformity variation of the gas flow field and the gas shock rebound in advance. The mathematical
model, the numerical method and the new physical findings in this paper, will provide an important theoretical support
for the in-depth understanding of the ejecta mixing and also for the solving of the corresponding engineering application

problems.

Keywords: inner explosion and mixing, Lagrangian coordinates, particle trajectory model, two-way
coupling
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