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Fig. 1. The structure of the sounding temperature

observation system.
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Fig. 2. 2D drawing and feature size of the bead ther-

mistor.
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Table 1. The physical parameters of the bead thermistor.
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Fig. 3. The relationship between air pressure and al-
titude.
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B 5 BRobR A H BELF &1 ] 2 <) 4% ) 5
Fig. 5. The grids of the bead thermistor model and

peripheral air domain.
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Fig. 6. (color online) The temperature field of the bead

thermistor model.
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(a) Structure of the device; (b) real graph of the de-

vice.
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Fig. 10. The discrepancy of the solar radiation errors

with respect to different solar radiation intensity.
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Fig. 11. The schematic of the rotation direction of the

solar radiation error simulation device.
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Fig. 12. The discrepancy of the solar radiation errors

with respect to different sensor angles.
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Table 2. Comparison of corrected values and measured results of the radiation errors.

I/W-m~2 H/km  T.)K  T.)K  T.—-T.)K  H/km T.)K T,/K  T.—T./K
200 0 0.05 0.06 —0.01 12 0.1 0.1 0
4 0.06 0.07 —0.01 16 0.13 0.14 —0.01
8 0.08 0.09 —0.01 20 0.17 0.19 —0.02
400 0 0.09 0.1 —0.01 12 0.20 0.22 —0.02
4 0.12 0.11 0.01 16 0.27 0.27 0
8 0.15 0.16 —0.01 20 0.34 0.35 —0.01
600 0 0.13 0.15 —0.02 12 0.31 0.31 0
4 0.17 0.18 —0.01 16 0.4 0.4 0
8 0.23 0.21 0.02 20 0.51 0.53 —0.02
800 0 0.18 0.2 —0.02 12 0.41 0.39 0.02
4 0.23 0.25 —0.02 16 0.54 0.55 —0.01
8 0.31 0.33 ~0.02 20 0.68 0.7 —0.02
1000 0 0.22 0.24 —0.02 12 0.51 0.57 —0.06
4 0.29 0.32 —0.03 16 0.67 0.72 —0.05
8 0.39 0.39 0 20 0.85 0.91 —0.06
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Abstract

Owing to the fact that the increasing amount of attention has been focused on numerical weather forecast and
climate change research, it is desired that the observation error of upper air temperature with using sounding temperature
sensors can be reduced down to 0.1 K. However, the temperature measurement errors of bead thermistor sounding
temperature sensors, induced by solar radiation, are on the order of 1 K or more, which is a few orders of magnitude
larger than the errors produced by the measurement circuits and digital signal processing systems in radiosondes. Hence,
the solar radiation error poses an important bottleneck for improving the measurement accuracy. To tackle this problem,
a numerical analysis method is proposed in this research. By employing a computational fluid dynamics (CFD) method,
the influences of various solar radiation intensity, sensor angles, and air pressures from sea level to 20 km altitude on
temperature measurement accuracy are studied. In this CFD model, the boundary conditions of external convection and
solar radiation of the bead thermistor are taken into consideration. The modeling results indicate that solar radiation
intensity and altitude are important factors that affect the amplitude of the radiation error. With the elevation increasing
from sea level, the solar heating error appears to have an exponential correlation with the altitude, which exhibits a
growing slop rate. When the sensor angle is 90°, the radiation error of a bead thermistor sensor probe is minimal. The
simulation results are fitted by a Levenberg-Marquardt method and a global optimization method. A correction equation
of the radiation error is obtained, where the altitude of the sensor and solar radiation intensity act as two major variables
in the equation. In order to verify the equation obtained in this study, an experimental platform for solar radiation error,
which includes a low-pressure temperature chamber, a rotation apparatus, an LED-based radiation source, and a wireless

communication system, is designed and constructed. It can be found that the solar radiation errors of the bead thermistor
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Nos. GYHY200906037, GYHY201306079), the National Natural Science Foundation of China (Grant Nos. 412475042,
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based on fluid dynamics numerical calculation are generally consistent with experimental data. The average offset and
root mean square error between the correction equation and experimental results are 0.017 K and 0.023 K, respectively,
which can demonstrate the accuracies of the computational fluid dynamics method, the Levenberg-Marquardt method
and the global optimization method proposed in this research. The methods and techniques introduced in this paper

may open the way for correcting the solar radiation errors of the bead thermistor sounding temperature sensors.

Keywords: sounding temperature sensor, bead thermistor, computational fluid dynamics, radiation error

PACS: 47.11.-j, 47.27., 87.19.1t, 92.60.Vb DOI: 10.7498/aps.65.114701
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