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Fig. 1. Averaged prediction error vs. the number of

basis modes.
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Fig. 2. (color online) Reconstructed pressure distri-

butions on the blade surface.
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Fig. 3. (color online) Histogram of the averaged pre-

diction error with different sampling methods.

124702-4


http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn

¥ 12 Z R Acta Phys. Sin.

Vol. 65, No. 12 (2016) 124702

K5 BB 7RIS S ke 7k 1. 7R 2/
POD i & KR B 40 & 19 M F 2R 0 ) 0 A, i
] e SR B SO R BOR, A8 I i 2 T 80 i
AT 5 0 B T BB L IS )R, %4
SRS B R ] I 7 90 A7 B4 A 4 R AR S
LU TR A B G R RERER, B POD R A 1
WA WIS 734 SAE I L — 2 XFLE I 4 iR
A a) oy A KB 5 B S 0 o AR TR H T E R
P RE % B 1t R 22 [A] AR IX S5k - A 2 3t 389 B
MK, AT BE W 4 i 2k T POD TR & B2 ) 15 T

1.0[B(,) B o o o o o
:|:| [u] o [m] o [m] m)
0.5
O o o o o o o
S o o o o o o
(o o o o o o o
—0.51
=] o o o a o o
~1o0fg, B @ @ o o @
—1.0 —0.5 0 0.5 1.0
Vi
1.0r0O (b) o
[u] o o o
0.5 o o
I o o
[u] o o o
o o
= of
o o
o o o o
r o o
—0.5 o B
[u] o o o
_1'0_?. M B T R .'?
—1.0 —0.5 0 0.5 1.0
Vi
LOFE (o) - =
L o o - o
L o o
0.5 o o
o o o o
= o
o o
o o o o
[ o o
—0.5 o o
o o o o
-topQ@ GO
—-1.0 —0.5 0 0.5 1.0
Vi

K4 ARIEITIEOEAD G (a) B2 (b) 7
%15 (c) 2

Fig. 4. Samples obtained from different methods:
(a) Uniform; (b) adaptive_1; (c) adaptive_ 2.
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Fig. 5. (color online) Reconstructed pressure distributions
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Abstract

A proper orthogonal decomposition (POD) based hybrid surrogate model and the applications to transonic flow
reconstructions are presented in the paper. In the implementations, the radial basis function (RBF) model response
instead of the least-square linear regression is employed in order to improve the coefficients of POD basis modes; moreover,
an adaptive sampling strategy with both the model response error and sample independence taken into account is
studied to reduce the sample number, while maintaining sufficient response accuracy. Firstly, the POD-RBF surrogate
model is studied and compared with the least-square-based POD through pressure reconstruction studies on the two-
dimensional blade surface. The results demonstrate that the non-linear model response method significantly improves
the coefficients of the basis modes and thus the averaged description error. Meanwhile, the beneficial gains on the
convergence performance of the response error versus the number of basis modes are obtained. Then by comparing
with the uniform sampling and the resampling strategy with taking only the response error into account, the adaptive
sampling method proposed in the paper obtains the best performance on reducing the averaged description error. Finally,
the flow characteristics of the flow fields on the suction surface, at the blade tip, in the blade passage of the sampled
three-dimensional transonic compressor rotor blades with different spanwise sweeps based on the baseline blade, NASA
Rotor 67 are illustrated through the flow basis modes. Compared with the suction flow, the flow at the blade tip contains
more intensive flow characteristics including shock, tip-leakage flow and shock-leakage interaction, resulting in a higher
averaged description error. Besides, the missed flow fields in the passages of the test blades are reconstructed from the
flow basis modes by using the adaptive POD-RBF hybrid model and the corresponding aerodynamic parameters are
then predicted. The spanwise distributions of the circumferentially averaged aerodynamic parameters at the blade outlet
reconstructed from POD-RBF model are consistent well with the numerical solutions. The results demonstrate that the
adaptive POD-RBF hybrid surrogate model is effective and accurate enough for reconstructing the transonic flow. In
order to further evaluate the response performance of the adaptive POD-RBF model, statistic analysis is carried out for
a group of hybrid models with different sampling strategies and different numbers of samples. Generally, although the
number of adaptive samples is much less, the mean value and standard deviation of the adaptive model are close enough
to those of the static model with sufficient uniform samples. Besides, the standard deviations of a lot of aerodynamic
parameters of interest exhibit significant peaks near the blade tip, further demonstrating that the flow at the blade tip

is more intensive in the three-dimensional transonic rotor blade passage.

Keywords: flow analysis, proper orthogonal decomposition, transonic, surrogate model
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