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PACS: 31.15.A—, 71.15.Mb, 71.20.-b, 73.22.—f DOI: 10.7498 /aps.65.133101
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Edge C sp Corner C sp?

K1 (MTEE) 8B ASRai bR B (B-N, N = 2)
Fig. 1. (color online) Typical atomic structures of f-
graphyne (B-N, N = 2).
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210, BEEFIUSLE « Hellman-Feynman 77 #l £z K
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5.0 x 10~ A.
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7 e
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Fig. 2. (color online) Average C atomic energy of f-
graphyne as a function of the fraction of sp-hybridized

carbon atom.

Bl 2 o, ARG T A S0 T B R - Re ARk,
B A SR RIE AR sp ZR 0B IR 1 LL ) £, REPERAL,
HHEMEEHE N EEER: N ATHRE, B-N
RANF 2B R T RE S B fop, BN FEAIS, 2817024 N
NABET, ARG S, B 8- R B 0 5 1
RETBE fop WM R. -1 R RMTHH SR
M4, X5 HRRER I TS5 A 0%, B-1 4544
& JUAALAL Ja i — R AR R G5 iR TR [ 5, HooS
TG N TR (W 3 FroR). M2 T, Hoth
B-N (N = 2—10) &t BN AL L aa 2 R FF-F
H (W 1 pR).

K3 p-1 & JUAHRALIEAZIEI B-1 A SR IRAS 14
Fig. 3. Distorted p-1 structure after geometry opti-

mization.
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RO R TR R B RAEE 4.
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Fig. 4. (color online) Average edge (a) and corner (b) atom

energy of f-IN with respect to graphene and carbyne.

FEIE 4 (b) Hh, A7 S bR BT 2 g B A0 (Lt
Gy) 5B 4 (a) KU, B LF R T HER (R HC)
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1.38 A. 5 — 71, £ C—C 8t Mulliken 8 7
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Fig. 5. Distribution of C—C bond length of f-N where N is odd (a) and even (b) number.
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Fig. 6. Distribution of C—C bond order of B-N where N is odd (a) and even (b) number.
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Table 1. Electron velocity at Dirac point of p-N with

Dirac cone feature.

Electron  Electron Electron

velocity velocity  velocity
System Percentage
(M- K) (K—=T) (average)

108 m/s 10 m/s 10% m/s
B-2 0.155 0.355 0.255 31%
p-6 0.359 0.468 0.414 51%
g-10 0.605 0.155 0.380 47%
Graphene 0.792 0.835 0.813 100%
4 % ®
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Abstract

Due to the diversified atomic structures and electronic properties, two-dimensional monolayer nanocarbon materials
(graphyne or graphdiyne) composed of sp and sp? hybridization C atoms have received the widespread attention in recent
years. The fundamental questions include how the sp orbital hybridization affects the electronic structure of graphyne.
In order to investigate the structure dependent electronic structures of graphyne, the energetic stabilities and electronic
structures of p-graphyne and its derivatives (B-N) with N carbon atoms on each edge of the hexagons are investigated
by density functional theory (DFT) calculations in this work. In our DFT calculations we adopt generalized gradient
approximation of Perdew, Burke, and Ernzerhof (GGA-PBE) using the CASTEP module implemented in Materials
Studio. The studied B-Ns consist of hexagon carbon rings connected by vertexes whose edges have various numbers
of carbon atoms N = 1-10. The structure and energy analyses show that p-Ns with even-numbered carbon chains
have alternating single and triple C—C bonds, energetically more stable than those with odd-numbered carbon chains
possessing continuous C—C double bonds. The calculated electronic structures indicate that p-Ns can be either metallic
(odd N) or semiconductive (even N), depending on the parity of number of hexagon edge atoms regardless of the edge
length due to Jahn-Teller distortion effect. Some semiconducting p-graphyne derivatives (8-N, N = 2, 6, 10) are found to
possess Dirac cones (DC) with small direct band gaps 10 meV and large electron velocities 0.255 x 10°-0.414 x 10° m/s,
~30%-50% of that of graphene. We find that Dirac cones also appear in $-3 and f-4 when we shorten the double bonds
and elongate the triple bonds in f-3 and -4 respectively. These results show that the bond length change will affect
the characteristics of band structure and suggests that the band structure characteristics may be influenced by Peierls
distortion in a two-dimensional system. Our DFT studies indicate that introducing sp carbon atoms into the hexagon
edges of graphene opens the way to switching between metallic and semiconductor/DC electronic structures via tuning
the parity of the number of hexagon edge atoms without doping and defects in nanocarbon materials and nanoelectronic
devices.

Keywords: graphyne, Dirac cone, density functional theory calculations, sp/sp? hybridized carbon
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