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Fig. 1. Simplified geometry (a) and interface profile

(b) assumed for the rod eutectic microstructure.
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Fig. 2. The three-dimensional domain modeled.
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Fig. 3. Phase diagram showing definition of Cg, C’g and Cf.
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Table 1. Numerical calculation of M and M, for different volume fraction.

f 0.200 0.210 0.220 0.230 0.240

0.250 0.260 0.270 0.280 0.290 0.300

M 0.041 0.041 0.041 0.040 0.040

Ma 0.044 0.043 0.042 0.042 0.041

0.040 0.040 0.040 0.039 0.038 0.038

0.041 0.040 0.039 0.038 0.037 0.036
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Fig. 4. The effect of convection on the interface solute

concentration.
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Fig. 5. The variation of the solute concentration of

the interface versus radium for different angles.
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Fig. 6. The variation of the average interface un-
dercooling with the rod spacing under variation con-
vections, where f = 0.25, aé = a’é = 0.25 um-K,
D = 2800 um?2 /s, mo = mp = 5 K/at.%, C§ = Cf =
14 at.%, V = 80 um/s, Gy = 0,0.25,0.5,1 s~ (from

up to down).
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Fig. 7. The variation of the average interface under-
cooling with convection for different rod spacing, where
f=025,af = af =0.25 pm-K, D = 2800 pm?/s, ma =
mg = 5 K/at.%, Cg = Cf = 14 at.%, V = 80 um/s,
A=6,7,8 um (from down to up).
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Fig. 8. The variation of the rod spacing versus growth
velocity under various convections, where f = 0.25,
al = aé =0.25 pmK, D = 620 pm?/s, mq = mg =
5 K/at.%, C§ = Cjy = 14 at.%.
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Fig. 9. The variation of the rod spacing with con-

vection for three growth velocities, where f = 0.25,
ak = aé =0.25 pmK, D = 620 pm?/s, mq = mg =

5 K/at.%, C§ = C§ = 14 at.%.
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Table 2. Influence of spin-up/spin-down of cylin-
der: V = 100 pm/s, D = 2800 pm?/s, v = 4.885
x1072 cm?/s.

il w/rm™l BHAEE r/mm Gu/s7! A/
5 0.1 0.107 1.031
5 0.2 0.214 1.066
5 0.3 0.321 1.104
5 0.4 0.428 1.147
10 0.1 0.304 1.098
10 0.2 0.607 1.231
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Abstract

Eutectic solidification is very important for exploring new materials in which the periodic multiphase structures
may have a remarkable or enhanced functionality. An asymptotic solution of the solute diffusion equation with flow
terms for the rod eutectic in the weak convective melt in directional solidification is obtained by using the asymptotic
method, and the effect of weak convection on the rod eutectic growth is studied. The so-called weak convection is
defined in this paper as the condition in which the intensity of convection flow ahead of the solid liquid interface is
relatively small. The relationships between the intensity of convection flow, the growth velocity, the rod spacing and
the average interface undercooling can be derived. The result shows that the weak convection has a significant effect
on the rod eutectic growth in directional solidification. The average interface undercooling is related to not only the
rod spacing and the growth velocity, but also the intensity of convection flow. When specifically focusing on the effect
of the intensity of convection flow on the average undercooling in directional solidification, the growth velocity is kept
the same. For a certain growth velocity, the average interface undercooling of the rod eutectic decreases as the intensity
of convection flow increases, especially at low growth velocity. The rod spacing, which is formed by solidified melt of
eutectic or near-eutectic composition, plays a very important role in determining the properties of final products. In this
study, by minimizing the average interface undercooling it is found that the rod spacing is a function of growth velocity
and the intensity of convection flow. It is shown that for the small growth velocity, the rod spacing increases as the
intensity of convection flow increases; for the large growth velocity, the rod spacing increases very slowly as the intensity
of convection flow increases. In other words, the smaller the growth velocity, the greater the effect of the weak convection
flow on the rod spacing. Our analytical result is compared with the results from other models, and it is also used to
calculate the practical case such as the rod spacing of the typical eutectic alloy, Al-Cu eutectic, under the condition of
weak forced convection induced by the accelerated crucible rotation technique. It is shown that the rod spacing increases
as the rotation rate or the radial position increases, which is consistent with the experimental results obtained by Junze

et al.
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