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Carlson迭代与任意阶分数微积分算子的
有理逼近∗

何秋燕 袁晓†

(四川大学电子信息学院, 成都 610065)

( 2016年 4月 29日收到; 2016年 5月 27日收到修改稿 )

将针对 1/n阶微积分算子有理逼近的经典Carlson正则牛顿迭代法拓展到任意阶分数微积分算子的有理
逼近. 为了构造一个有理函数序列收敛于无理的分数微积分算子函数, 将分数微积分算子有理逼近问题转换
为二项方程的算术根代数迭代求解. 并引入预矫正函数, 使用牛顿迭代公式求解算术根, 获得任意阶分数微
积分算子的有理逼近阻抗函数. 对n从 2到 5变化的九种不同运算阶, 针对特定的运算阶, 选择八种不同的初
始阻抗, 通过研究阻抗函数的零极点分布和频域特征, 分析阻抗函数是否同时满足计算有理性、正实性原理和
运算有效性. 证明对任意的运算阶, 在选择合适的初始阻抗的情况下, 阻抗函数具有物理可实现性, 在一定频
率范围内具有分数微积分算子的运算特性. Carlson正则牛顿迭代法的推广为进一步的理论研究和构造任意
分数阶电路与系统提供一种新思路.

关键词: 分数微积分, 分数算子, 分抗逼近电路, Carlson有理逼近
PACS: 02.30.Vv, 02.60.Gf, 84.30.Bv DOI: 10.7498/aps.65.160202

1 引 言

分数微积分算子, 简称分数算子, 通常在拉普
拉斯变换域中表示为 sµ, s是拉普拉斯变量 (常称
复频率变量, 亦称运算变量), µ是运算阶 (取值为
分数, 即µ ∈ Q). 人们提出二项式展开法 [1−3]、连

分式展开法 [4−7]、Padé有理逼近法 [8,9]、Carlson正
则牛顿迭代法 [10−12]等方法构造分数算子 sµ的有

理逼近阻抗函数序列 {Zk(s)} (k ∈ N) (k是迭代次
数). 根据电路网络综合理论, 使用现成的 (无源的
或有源的)电气电子元器件 (比如电阻或电容等元
件)组成阻抗函数为Zk(s)的电路——分抗逼近电
路, 在一定复频率范围内逼近分数算子 sµ [13−15].
结合有源器件 (比如运算放大器、OTA器件等), 便
能够实现模拟的分数阶微积分电路 [16,17], 建模与
研究自然界中的分数阶现象与过程 (比如模拟生物
神经脉冲振荡信号 [18], 分数布朗运动的建模 [19],

著名的Curie定律 [20]等). 分数微积分在分数阶信
号处理 [21,22]、分数阶电路与系统 [23−26]、分数阶混

沌系统 [27−29]等方面的应用日益广泛.
20世纪五、六十年代, Carlson与Halijak提出

正则牛顿迭代法有理逼近分数算子 s±1/n (n为
大于或等于 2的整数). 通过Carlson正则牛顿迭
代法 (简称Carlson迭代法)获得的阻抗函数序列
{Zk(s)}(k ∈ N)能够同时等程度地、均匀地、平稳
地向高频、低频段逼近分数算子 [14,30]. Carlson迭
代法的K指标等于 2n lg[(n + 1)/(n − 1)]——迭代
次数k增加一次, 逼近分数算子的频率带宽增加约
1.7—1.9个数量级 [30]. 因此, Carlson迭代法对分
数算子 s±1/n的有理逼近是一种卓有成效的方法.

在现有相关文献中, Carlson迭代法仅仅用
于分数算子 s±1/n的有理逼近. 本文考察Carl-
son迭代法能否实现对任意阶分数算子 s±j/n(n ∈
N+, n > 2, j ∈ N+, 1 6 j 6 n − 1)的有理逼近.
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首先简要论述理想分数算子 sµ的有理逼近原理,
重点探讨阻抗函数的物理可实现性及需要满足的

基本性质; 接着介绍Carlson 迭代有理逼近原理,
推导任意阶分数算子 sµ的有理逼近阻抗函数序列

{Zk(s)}; 然后考察阻抗函数的计算有理性、正实性
原理和运算有效性, 分析阻抗函数Zk(s)是否具有

分数阶运算特性和物理可实现性; 最后进行总结与
展望, 并提出一些值得进一步研究的有关课题.

2 分数算子的Carlson有理逼近原理

2.1 理想分数算子的有理逼近概念与

数学要求

理想分数算子

I(µ)(s) = sµ (0 < |µ| < 1, µ ∈ Q) (1)

是一个无理函数. 分数算子的有理逼近问题是用
实系数有理阻抗函数序列 {Zk(s)}(k ∈ N)在一定
频率范围内逼近理想分数算子所对应的无理函数

I(µ)(s),

Zk(s) =
Nk(s)

Dk(s)
=

nk∑
i=0

βkis
i

dk∑
i=0

αkis
i

k→∞−→ I(µ)(s) = sµ, (2)

式中, 正整数参变量nk和dk分别表示分子多项式

Nk(s)与分母多项式Dk(s)的次数.

βk = [βk,nk
, βk,nk−1, · · · , βk1, βk0], (3)

αk = [αk,dk
, αk,dk−1, · · · , αk1, αk0] (4)

分别表示分子多项式Nk(s)与分母多项式Dk(s)的

系数矢量 (次数由高到低进行排列, 也即降幂排
列). 理论上, 当迭代次数k趋于无穷大时, 阻抗函
数Zk(s)在全频率范围内逼近理想分数算子 sµ.

为实现电路网络综合和具有分数阶运算特

性, 阻抗函数序列 {Zk(s)}需要满足以下基本性
质 [13,30,31].

1)计算有理性 (computational rationality): 在
Zk(s)的表达式中, 不能存在关于运算变量 s的无

理运算, 只能存在有理运算.
2)正实性原理 (positive reality principle): 正

实性原理是系统具有因果性与稳定性的充分必要

条件, 是无源电路网络综合理论的物理实现要求.
正实性原理要求分子、分母多项式Nk(s)与Dk(s)

都是严格Hurwitz多项式——最高次数项与最低
次数项之间不能有缺项, 且系数是正实数. 换言之,
阻抗函数Zk(s)的零极点或是在 s复平面的负实轴

上, 或是共轭成对出现在 s复平面的左半平面.
3)运算有效性 (operational validity): 阻抗函

数Zk(s)在一定复频率范围内具有分数算子 sµ的

运算性能. 在理想情况下, 要求极限阻抗函数

Z(s) = lim
k→∞

Zk(s) = sµ. (5)

令

s = jΩ = j2π · 10ϖ ⇔ ϖ = lg
( Ω

2π

)
(Ω ∈ R+, ϖ ∈ R), (6)

式中, Ω是模拟频率变量, 称ϖ为频率指数变量.
则运算有效性要求频率响应或频率特征函数序列

{Zk(jΩ)}收敛于 I(µ)(jΩ) = (jΩ)µ. 因此, 在频域,
运算有效性分解成如下三个部分:

a)幅频特征的有效性

Λk(ϖ) = lg |Zk(j2π · 10ϖ)| k→∞−→ Λ(µ)(ϖ)

= lg
∣∣∣I(µ)(j2π · 10ϖ)

∣∣∣
= µ[ϖ + lg(2π)] (ϖ ∈ R); (7a)

b)相频特征的有效性

Θk(ϖ) = arg {Zk(j2π · 10ϖ)} k→∞−→ Θ(µ)(ϖ)

=
π

2
µ (ϖ ∈ R). (7b)

c)阶频特征的有效性

Mk(ϖ) =
dΛk(ϖ)

dϖ
k→∞−→ M (µ)(ϖ)

=
dΛ(µ)(ϖ)

dϖ = µ (ϖ ∈ R). (7c)

2.2 Carlson迭代有理逼近原理

Carlson迭代有理逼近分数算子 s±1/n的基本

数学思想是: 将分数算子 s±1/n 有理逼近问题

Zk(s)
k→∞−→ s±1/n(k ∈ N, n ∈ N+, n > 2) (8)

中待求解的未知阻抗函数Zk(s)用未知数xk替代,
确定的微积算子 s±1用已知正实数 a替代 (即取
a = s±1), 那么在给定正整数n(n > 2)时, (8)式
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可写成

xk
k→∞−→ r =

n√
a (xk ∈ R+, a ∈ R+, n > 2).

(9)

那么分数算子有理逼近问题就转化为正实数a的

求根问题——n次二项方程

f(x) = xn − a = 0

(n ∈ N+, n > 2, x ∈ R+, a ∈ R+)
(10)

的正实根 r =
n√
a的迭代近似求解. 求解算术根 r

的经典牛顿迭代公式是

xk+1 = FN(xk) = xk −
f(xk)

f ′(xk)

= xk ·
(n− 1)xn

k + a

nxn
k

(k ∈ N). (11)

为加快牛顿迭代过程的收敛速度, Carlson引
入预矫正函数

gm(x) = xm > 0

(x ∈ R+, m ∈ N, 0 6 m 6 n− 1),
(12)

得到方程 (10)的一个同解方程:

fC(x) =
f(x)

gm(x)
= xn−m − ax−m = 0. (13)

于是算术根 r =
n√
a的广义牛顿迭代算法公式是

xk+1 = FG(xk) = xk −
fC(xk)

f ′
C(xk)

= xk ·
(n−m− 1)xn

k + (m+ 1)a

(n−m)xn
k +ma

(k ∈ N). (14)

取m = (n− 1)/2, 得到算术根 r =
n√
a的正则牛顿

有理迭代公式——Carlson 迭代公式

xk+1 = FC(xk) = xk ·
(n− 1)xn

k + (n+ 1)a

(n+ 1)xn
k + (n− 1)a

(k ∈ N). (15)

令a = 1/s并代入迭代公式 (15)式, 得到分数算子
s−1/n的有理逼近阻抗函数序列

Zk+1(s) = FC (Zk(s))

= Zk(s) ·
(n− 1)s · Zn

k (s) + (n+ 1)

(n+ 1)s · Zn
k (s) + (n− 1)

(k ∈ N). (16)

2.3 分数算子s±j/n的有理逼近

Carlson迭代法能否实现对任意阶分数算子
s±j/n (j ∈ N+, 1 6 j 6 n− 1)的有理逼近?

将分数算子 s±j/n有理逼近问题转换为n次二

项方程

f(x) = xn − aj = 0 (a ∈ R+, x ∈ R+) (17)

的正实根

r(j) =
n√
aj (18)

的数值迭代近似求解. 引入预矫正函数 gm(x) (取
m = (n− 1)/2), 并使用牛顿迭代公式, 则求解算
术根 r(j) =

n√
aj的迭代公式为

xk+1 = F
(j)
C (xk) = xk ·

(n− 1)xn
k + (n+ 1)aj

(n+ 1)xn
k + (n− 1)aj

(k ∈ N). (19)

令a = 1/s并代入迭代公式 (19)式, 得到分数算子
s−j/n的有理逼近阻抗函数序列

Zk+1(s) = F
(j)
C (Zk(s))

= Zk(s) ·
(n− 1)sj · Zn

k (s) + (n+ 1)

(n+ 1)sj · Zn
k (s) + (n− 1)

=
Nk(s)

Dk(s)
· (n− 1)sj ·Nn

k (s) + (n+ 1) ·Dn
k (s)

(n+ 1)sj ·Nn
k (s) + (n− 1) ·Dn

k (s)
.

(20)

与此对应的分子、分母多项式系数矢量βk与αk的

迭代公式

βk+1 = βk ∗ [(n− 1)j
−−→
β∗n
k + (n+ 1)jα∗n

k ]

(k ∈ N), (21)

αk+1 = αk ∗ [(n+ 1)j
−−→
β∗n
k + (n− 1)jα∗n

k ]

(k ∈ N), (22)

式中, ∗表示卷积运算. j−−→β∗n
k 表示对βk进行n − 1

次卷积运算之后再进行增 j次扩项操作, 例如对βk

进行增 j次扩项操作

j−→βk = [βk,nk
, βk,nk−1, · · · , βk1, βk0, 0, · · · , 0︸ ︷︷ ︸

j个0

],

(23)
j−→βk 的最高次数是nk + j. jα∗n

k 表示对αk进行

n−1次卷积运算之后再进行等 j次扩项操作, 例如
对αk进行等 j次扩项操作

jαk = [0, · · · , 0︸ ︷︷ ︸
j个0

, αk,dk
, αk,dk−1, · · · , αk1, αk0],

(24)
jαk的最高次数仍是dk, 共含 dk + j + 1项. 等次
扩项便于程序中运用矩阵运算, 减少计算量. 阻抗
函数Zk(s)分子、分母多项式的次数 nk 与 dk 由初
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始阻抗函数分子、分母多项式的次数n0 与 d0、迭代

次数k和运算阶µ = −j/n 共同决定,

n0 = d0 → nk = dk

= (n+ 1)k(n0 + µ)− µ,

n0 = d0 + 1 → nk = dk + 1

= (n+ 1)k(n0 + µ)− µ,

n0 = d0 − 1 → nk = dk − 1

= (n+ 1)k(n0 + 1)− 1.

(25)

在数学上应用牛顿迭代公式求解方程的算术

根是完全允许的. 考虑电路网络综合的物理实
现和阻抗函数的分数阶运算特性, 阻抗函数序列
{Zk(s)}需要满足计算有理性、正实性原理和运算
有效性.

3 分数算子s±j/n的Carlson有理逼近
的理论验证与实验验证

给定初始阻抗函数Z0(s), 代入迭代公式得到
阻抗函数Zk(s)及分子、分母多项式系数矢量βk和

αk. 阻抗函数序列{Zk(s)}是否满足基本性质通过
以下方式判断.

1)计算有理性: 当选择有理的初始阻抗函数
时, 由Carlson迭代公式获得的阻抗函数保证计算
有理性.

2)正实性原理: 根据系数矢量计算的零极点分
布判断阻抗函数是否满足正实性原理.

3)运算有效性: 由阻抗函数的频域特征曲线判
断阻抗函数是否满足运算有效性, 具有分数阶运算
特性.

3.1 运算阶µ = ±2/3的分数算子的

有理逼近

首先以运算阶µ = −j/n = −2/3为例. 当初
始阻抗函数

Z0(s) =
N0(s)

D0(s)
=

1

s
(n0 = 0, d0 = 1), (26)

则由迭代 (20)式得到

Z
(−2/3)
1 (s) =

1

s
· 2s+ 1

s+ 2
,

Z
(−2/3)
2 (s) =

1

s

× 4s5+42s4+92s3+80s2+24s+1

s5+24s4+80s3+92s2+42s+4
. (27)

阻抗函数的分子、分母多项式系数矢量及零

极点如表 1所示. 分母多项式的次数比分子

多项式高一次, 且满足关系式nk = dk − 1 =

(n+1)k(n0+1)−1(表 1中的系数矢量为分子、分母
多项式约掉共同项后的结果). 阻抗函数Z

(−2/3)
k (s)

除原点存在一个极点, 其余零极点都分布在 s复平

面的左半平面, 且互为倒数——相对应的分子、分
母多项式互为镜像多项式.

表 1 阻抗函数的系数矢量及零极点, µ = −2/3, Z0(s) = 1/s

Table 1. Coefficient vectors and zero-pole distribution of the impedance function when µ = −2/3

and Z0(s) = 1/s.

迭代

次数 k

分子、分母

多项式系数矢量
零点 极点

k = 0
β0 = [1]

α0 = [1, 0]
— 0

k = 1
β1 = [2, 1]

α1 = [1, 2, 0]
−0.5 0, −2.0

k = 2
β2 = [4, 42, 92, 80, 24, 1]

α2 = [1, 24, 80, 92, 42, 4, 0]

−7.9, −1.0 + j0.48,
−1.0− j0.48, −0.5,

−0.049

−20.0, −2.0,
−0.8 + j0.37,
−0.8− j0.37,

−0.13, 0

阻抗函数Z
(−2/3)
k (s)的频域特征曲线如图 1所

示, 实线表示阻抗函数随着迭代次数 k变化的频

域特征曲线, 虚线表示理想分数算子 s−2/3的频域

特征曲线. 由图 1可知, 阻抗函数Z
(−2/3)
k (s)的幅

频、相频和阶频特征曲线, 随着迭代次数k 的增加,
逼近理想分数算子 s−2/3频域特征曲线的频率带

宽在逐渐增加. 阻抗函数Z
(−2/3)
k (s)具有分数算子

s−2/3的运算特性, 满足运算有效性.
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综上所述, 阻抗函数Z
(−2/3)
k (s)满足计算有理

性, 正实性原理和运算有效性, 所以阻抗函数能够
实现对分数算子 s−2/3的有理逼近, 具有物理可实
现性.

Z
(+2/3)
k (s)是阻抗函数 Z

(−2/3)
k (s)的倒数 (即

Z
(+2/3)
k (s) = 1/Z

(−2/3)
k (s)), 频域特征曲线如

图 2所示 (实线表示阻抗函数随着迭代次数k变化

的频域特征曲线, 虚线表示理想分数算子 s+2/3的

频域特征曲线). 由图 2可知, 阻抗函数Z
(+2/3)
k (s)

具有分数阶运算特性, 能够实现对分数算子 s+2/3

的有理逼近.
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图 1 (网刊彩色) 阻抗函数Zk(s)的频域特征曲线图

(µ = −2/3, Z0(s) = 1/s) (a) 幅频特征; (b) 相频特
征; (c) 阶频特征
Fig. 1. (color online) Frequency-domain character-
istics curves of the impedance function Zk(s) with
µ = −2/3 and Z0(s) = 1/s: (a) Amplitude-frequency
characteristics; (b) phase-frequency characteristics;
(c) order-frequency characteristics.
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图 2 (网刊彩色) 阻抗函数Zk(s)的频域特征曲线图

(µ = 2/3, Z0(s) = 1/s) (a) 幅频特征; (b) 相频特征;
(c) 阶频特征
Fig. 2. (color online) Frequency domain characteristic
curves of the impedance function Zk(s) with µ = 2/3

and Z0(s) = 1/s: (a) Amplitude-frequency character-
istics; (b) phase-frequency characteristics; (c) order-
frequency characteristics.

3.2 运算阶µ = −3/5的分数算子的有理

逼近

按照类似的分析方法考察其他运算阶µ =

−j/n在不同初始阻抗函数的情况下是否能够

有理逼近理想分数算子 s−j/n. 比如当运算阶
µ = −j/n = −3/5, 初始阻抗为电容和电阻串
联时, 即

Z0(s) =
N0(s)

D0(s)
= R+

1

Cs
= 1 +

1

s
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(R = 1, C = 1, n0 = d0 = 1), (28)

迭代次数k = 1时, 阻抗函数的分子、分母多项式系
数矢量及零极点如表 2所示. 阻抗函数Z

(−3/5)
1 (s)

的分子多项式的次数n1等于分母多项式的次数d1,
并且满足关系式nk = dk = (n + 1)k(n0 + µ) − µ.
除原点存在一个极点, 其他零极点都分布在 s复平

面的左半平面. 随着迭代次数k的增加, 获得的阻
抗函数由于分子、分母多项式的系数较大且项数较

多, 不便于具体表示, 但具有相同的结论.
阻抗函数Z

(−3/5)
k (s)的阶频和相频特征曲线

如图 3所示 (实线表示阻抗函数的频域特征曲线,
虚线表示理想分数算子 s−3/5的频域特征曲线). 当
初始阻抗函数为Z0(s) = R + 1/(Cs)时, 由迭代公
式获得的阻抗函数Z

(−3/5)
k (s)虽然逼近频率边缘存

在振荡现象, 但具有分数算子 s−3/5的运算特性和

物理可实现性.

表 2 阻抗函数Zk(s)的系数矢量及零极点 (µ = −3/5, Z0(s) = 1 + 1/s)
Table 2. Coefficient vectors and zero-pole distribution of the impedance function when µ = −3/5

and Z0(s) = 1 + 1/s.

迭代

次数 k

分子、分母

多项式系数矢量
零点 极点

k = 0
β0 = [1, 1]

α0 = [1, 0]
−1 0

k = 1
β1 = [2, 12, 30, 43, 33, 12, 2]

α1 = [3, 15, 30, 32, 15, 3, 0]

−2.6,−0.91 + j1.3,
−0.91− j1.3, −1.0,

−0.3 + j0.25, −0.3− j0.25

−2.3,−0.98 + j1.1,
−0.98− j1.1
−0.38 + j0.26,
−0.38− j0.26, 0

0 1

0

0.2

-0.5

-1-2-3 0 1-1-2-3

0

6

-6(a) (b)

Θ(µ)(ϖ)/p=µ/2

µ=−3/5

ϖ ϖ

Θ
k
(ϖ
)/
p

M
k
(ϖ
)

图 3 阻抗函数Zk(s)的频域特征曲线图 (µ = −3/5, k = 3) (a) 相频特征; (b) 阶频特征
Fig. 3. Frequency-domain characteristics curves of the impedance function Zk(s) with µ = −3/5 and k = 3:
(a) Phase-frequency characteristics; (b) order-frequency characteristics.

3.3 运算阶与初始阻抗

运算阶µ分别取值−1

2
,−1

3
,−2

3
, · · · ,−3

5
,−4

5
,

在选择 8种不同初始阻抗函数的情况下, 研究理想
分数算子 s−j/n的有理逼近阻抗函数Zk(s)是否具

有分数阶运算特性和具有物理可实现性, 总结如
表 3所示 (“⊕”表示串联, “//”表示并联. “

√
”表示

阻抗函数Z
(−j/n)
k (s)具有分数算子 s−j/n的运算特

性和物理可实现性; 反之, “ × ”表示阻抗函数不具
有分数阶运算特性和物理可实现性).

在以下三种特例中, 阻抗函数Zk(s)并不具有

分数阶运算特性和物理可实现性.
1)不稳定. 阻抗函数的部分极点分布在 s复平

面的右半平面或者虚轴上 (除原点外), 造成系统不
稳定, 不满足正实性原理. 比如运算阶µ = −3/4且

Z0(s) = (s + 2)/(s + 1)(初始阻抗为电容和电阻并
联, 再串联一个电阻), 迭代次数k = 1时, 阻抗函数

Z1(s) =
(
3s8 + 30s7 + 120s6 + 245s5 + 270s4

+ 166s3 + 80s2 + 45s+ 10
)

·
(
5s8 + 45s7 + 160s6 + 283s5 + 255s4

+ 110s3 + 30s2 + 15s+ 3
)−1

. (29)
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表 3 不同的运算阶 µ选择不同的初始阻抗得到的阻抗函数的逼近情况

Table 3. Approximation situations of the impedance functions with different operational orders µ and
different initial impedances.

初始阻抗Z0(s)
逼近情况

−1/2 −1/3 −2/3 −1/4 −3/4 −1/5 −2/5 −3/5 −4/5

R
√ √

×
√

×
√

× × ×

C
√

×
√

×
√

× × ×
√

R⊕ C
√ √ √ √ √ √ √ √ √

R//C
√ √ √ √ √ √ √ √ √

R1 ⊕ (R2//C)
√ √ √ √

×
√ √

× ×

C1 ⊕ (R//C2)
√ √ √

×
√

× ×
√ √

R1//(R2 ⊕ C)
√ √ √ √

×
√ √

× ×

C1//(R⊕ C2)
√ √ √

×
√

× ×
√ √

分子、分母多项式的零极点分布如图 4所示 (“◦”表
示零点, “× ” 表示极点). 两个极点分布在 s复平面

的右半平面, 造成系统不稳定, 不满足正实性原理,
阻抗函数Zk(s)不能够实现对分数算子 s−3/4的有

理逼近.

-3 -2 -1 0 1

-1

0

1

Real part

Im
a
g
in

a
ry

 p
a
rt

图 4 阻抗函数Z1(s)的零极点分布图, µ = −3/4

Fig. 4. Zero-pole distribution of the impedance func-
tion Z1(s) with µ = −3/4.

2)分子、分母多项式中最高次数项与最低次数
项之间有缺项. 比如当运算阶µ = −2/5且初始阻

抗Z0(s) = 1/s时, 迭代次数k = 1时阻抗函数

Z1(s) =
N1(s)

D1(s)
=

3s3 + 2

2s4 + 3s
. (30)

分子多项式缺二次项和一次项, 分母多项式缺三次
项和二次项, 不满足正实性原理. 频域特征曲线如
图 5所示 (图中实线是阻抗函数随迭代次数k变化

的频域特征曲线, 虚线是理想分数算子 s−2/5的频

域特征曲线). 阻抗函数的相频特征也不满足相频
有效性

Θk(ϖ)/π
k→∞−→ Θ(µ)(ϖ)/π = µ/2. (31)
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图 5 (网刊彩色) 阻抗函数Zk(s)的频域特征曲线图:
µ = −2/5, Z0(s) = 1/s (a) 相频特征; (b) 阶频特征
Fig. 5. (color online) Frequency-domain character-
istics curves of the impedance function Zk(s) with
µ = −2/5 and Z0(s) = 1/s: (a) Phase-frequency
characteristics; (b) order-frequency characteristics.
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所以阻抗函数Z
(−2/5)
k (s)并不具有分数阶运算特性

和物理可实现性.
3)阻抗函数不是复有理函数. 若阻抗函数

Z
(±j/n)
k (s)是实有理函数, 不是复有理函数, 则相
频特征函数不满足相频有效性, 即不满足 (7b)式,
阻抗函数Zk(s)不具有分数算子 s±j/n的运算特性.
比如当运算阶µ = −2/3且初始阻抗Z0(s) = R时,
迭代次数k = 2 时的阻抗函数

Z2(s) =
N2(s)

D2(s)

=
s10 + 24s8 + 80s6 + 92s4 + 42s2 + 4

4s10 + 42s8 + 92s6 + 80s4 + 24s2 + 1
. (32)

阻抗函数Z2(s)的分子、分母多项式缺少奇数次

项, 且对应的零极点不全分布在 s复平面的左半

平面. 而且Z2(s)是实有理函数, 相频特征函数
Θk(ϖ) ̸= −π/3, 不满足相频有效性. 所以阻抗函
数Zk(s)不可能实现对理想分数算子 s±j/n的有理

逼近.

4 结 论

Carlson等提出正则牛顿迭代法有理逼近分数
算子 s±1/n (n为大于或等于 2的整数). 本文研究
Carlson迭代法能否实现对任意阶分数算子 s±j/n

的有理逼近. 根据理论分析与实验验证, 对任意的
运算阶µ, 选择合适的有理初始阻抗Z0(s), 通过拓
展的Carlson迭代公式获得阻抗函数Zk(s). 阻抗
函数满足计算有理性、正实性原理和运算有效性,
具有物理可实现性和分数阶运算特性, 能够实现任
意阶分数算子 sµ的有理逼近. Carlson迭代法的拓
展——由单一的分数算子 s±1/n到完美的任意阶

分数算子 s±j/n, 是行之有效的. 实现任意阶分数
算子的有理逼近, 为进一步的理论研究和构造任意
分数阶电路与系统打下坚实的基础. 接下来的研究
课题是尝试获得阻抗函数Zk(s)的零极点的解析表

达式 (类似文献 [32]中Oldham链分抗的零极点解
析表达式), 由零极点解析表达式便可判断系统的
稳定性和分析系统对分数算子的逼近性能. 已知
Carlson迭代法有理逼近分数算子 s±1/n的K指标,
能否获得当 j > 2时的K指标, 这是一个急需解决
的难题. 使用无源器件或者结合有源器件来设计
与构造分数阶元器件与系统, 比如利用网络综合理
论设计分抗逼近电路, 实现任意阶分数微分和积分
电路.
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Abstract
With the development of factional calculus theory and applications in different fields in recent years, the rational

approximation problem of fractional calculus operator has become a hot spot of research. In the early 1950s and
1960s, Carlson and Halijak proposed regular Newton iterating method to implement rational approximation of the
one-nth calculus operator. Carlson regular Newton iterating method has a great sense of innovation for the rational
approximation of fractional calculus operator, however, it has been used only for certain calculus operators. The aim
of this paper is to achieve rational approximation of arbitrary order fractional calculus operator. The realization is
achieved via the generalization of Carlson regular Newton iterating method. To construct a rational function sequence
which is convergent to irrational fractional calculus operator function, the rational approximation problem of fractional
calculus operator is transformed into the algebra iterating solution of arithmetic root of binomial equation. To speed
up the convergence, the pre-distortion function is introduced. And the Newton iterating formula is used to solve
arithmetic root. Then the approximated rational impedance function of arbitrary order fractional calculus operator is
obtained. For nine different operational orders with n changing from 2 to 5, the impedance functions are calculated
respectively through choosing eight different initial impedances for a certain operational order. Considering fractional
order operation characteristics of the impedance function and the physical realization of network synthesis, the impedance
function should satisfy these basic properties simultaneously: computational rationality, positive reality principle and
operational validity. In other words, there exists only rational computation of operational variable s in the expression
of impedance function. All the zeros and poles of impedance function are located on the negative real axis of s complex
plane or the left-half plane of s complex plane in conjugate pairs. The frequency-domain characteristics of impedance
function approximate to those of ideal fractional calculus operator over a certain frequency range. Given suitable initial
impedance and for an arbitrary operational order, it is proved that the impedance function could meet all properties
above by studying the zero-pole distribution and analyzing frequency-domain characteristics of the impedance function.
Therefore, the impedance function could take on operational performance of the ideal fractional calculus operator and
achieve the physical realization. It is of great effectiveness in the generalization of this kind of method in both theory
and experiment. The results educed in this paper are the basis for further theoretic research and engineering application
in constructing the arbitrary order fractional circuits and systems.
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