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Fig. 1. (color online) Frequency-domain character-
istics curves of the impedance function Zj(s) with
p=—2/3 and Zy(s) = 1/s: (a) Amplitude-frequency
characteristics; (b) phase-frequency characteristics;

(c) order-frequency characteristics.
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Fig. 2. (color online) Frequency domain characteristic
curves of the impedance function Z(s) with p = 2/3
and Zo(s) = 1/s: (a) Amplitude-frequency character-
istics; (b) phase-frequency characteristics; (c) order-

frequency characteristics.
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Table 2. Coefficient vectors and zero-pole distribution of the impedance function when p = —3/5

and Zo(s) =1+ 1/s.
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Fig. 3. Frequency-domain characteristics curves of the impedance function Zy(s) with 4 = —3/5 and k = 3:

(a) Phase-frequency characteristics; (b) order-frequency characteristics.
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Table 3. Approximation situations of the impedance functions with different operational orders p and

different initial impedances.
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Abstract

With the development of factional calculus theory and applications in different fields in recent years, the rational
approximation problem of fractional calculus operator has become a hot spot of research. In the early 1950s and
1960s, Carlson and Halijak proposed regular Newton iterating method to implement rational approximation of the
one-nth calculus operator. Carlson regular Newton iterating method has a great sense of innovation for the rational
approximation of fractional calculus operator, however, it has been used only for certain calculus operators. The aim
of this paper is to achieve rational approximation of arbitrary order fractional calculus operator. The realization is
achieved via the generalization of Carlson regular Newton iterating method. To construct a rational function sequence
which is convergent to irrational fractional calculus operator function, the rational approximation problem of fractional
calculus operator is transformed into the algebra iterating solution of arithmetic root of binomial equation. To speed
up the convergence, the pre-distortion function is introduced. And the Newton iterating formula is used to solve
arithmetic root. Then the approximated rational impedance function of arbitrary order fractional calculus operator is
obtained. For nine different operational orders with n changing from 2 to 5, the impedance functions are calculated
respectively through choosing eight different initial impedances for a certain operational order. Considering fractional
order operation characteristics of the impedance function and the physical realization of network synthesis, the impedance
function should satisfy these basic properties simultaneously: computational rationality, positive reality principle and
operational validity. In other words, there exists only rational computation of operational variable s in the expression
of impedance function. All the zeros and poles of impedance function are located on the negative real axis of s complex
plane or the left-half plane of s complex plane in conjugate pairs. The frequency-domain characteristics of impedance
function approximate to those of ideal fractional calculus operator over a certain frequency range. Given suitable initial
impedance and for an arbitrary operational order, it is proved that the impedance function could meet all properties
above by studying the zero-pole distribution and analyzing frequency-domain characteristics of the impedance function.
Therefore, the impedance function could take on operational performance of the ideal fractional calculus operator and
achieve the physical realization. It is of great effectiveness in the generalization of this kind of method in both theory
and experiment. The results educed in this paper are the basis for further theoretic research and engineering application

in constructing the arbitrary order fractional circuits and systems.

Keywords: fractional calculus, fractional operator, fractance approximation circuit, Carlson rational

approximation

PACS: 02.30.Vv, 02.60.Gf, 84.30.Bv DOTI: 10.7498/aps.65.160202

* Project supported by the Science and Technology Plan of Chengdu, China (Grant No. 12DXYB255JH-002).

t Corresponding author. E-mail: heqiuyan789@Q163.com

160202-10


http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn
http://dx.doi.org/10.7498/aps.65.160202

	1引 言
	2分数算子的Carlson有理逼近原理
	2.1 理想分数算子的有理逼近概念与 数学要求
	2.2 Carlson迭代有理逼近原理
	2.3 分数算子sj/n的有理逼近

	3分数算子sj/n的Carlson有理逼近 的理论验证与实验验证
	3.1 运算阶= 2/3的分数算子的 有理逼近
	Table 1
	Fig 1
	Fig 2

	3.2 运算阶= - 3/5的分数算子的有理 逼近
	Table 2
	Fig 3

	3.3 运算阶与初始阻抗
	Table 3
	Fig 4
	Fig 5


	4结 论
	References
	Abstract

