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Fig. 1. The trajectory of the cylinder motion for the
steady vibrating.
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Fig. 2. The vorticity distribution of steady VIV at typical times.
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Fig. 3. The distributions of pressure coefficient CzF
along the surface of the vibrating cylinder: (a) The
distributions of pressure coefficient CZ  of 2Dof VIV
at times A, B,C, D; (b) the comparison of 1Dof and
2Dof VIV for the distributions of pressure coefficient
Cpp at times B, D.

T A4, B3 (b) i LLE 1, 1Dof (XTI 4R
) AR5 2Dof AR AR L, BT R AR R

) B A%, BRI 00 1A 5 BE AR AR D, AT [
R 6 = 180° M i /122t AL/

4.2 2Dof;mEHRS% K BHIEHIzhSEIE

T N EAE B 2 7 T AR P s R E R S
K r G LB, R H B A I AR I A # I 4 i 3
V5 ) AR ) 2E AT 3 A, B4 PR, A B 4 (a)
A 4 (b) 3 A RE R AR ALK, B, C, D M
ESCEH B UAFE, Fhrd = 0—7 X R [ 9 1.
Bl 4 (a) FIEAEAE Co I ZIAL T8 IHIRFS, 2t = 446
I O AT (K 20 3, IR AE T 7 4R L R v 1)
EIRIE RS K, wE b O —Cs W ZITR; 2
J5 PR R 2218 14 R I 1k N TR e IR BRAS, W&l Cy
B ZI BT, 7R ¢ = 650 B Z it i e i g, A YV
] b R R R R, i Cs—Cs (N = 0.5)
Jiw, B4 fa g RN IRIE EARSN, T Cr
(N = 05) . ) 28 K (N = 2.5)0,
FAEAE 2 1) IR 5 i R, B4 (b)
B, D; 5B 4 (a) 18 C; 6 NLAH R A 3. B AETE
By, Do TRAE T IERES, 2t = 446 BRI 5,
FELEBR IR T, 8 26 Im) T ™ AR DK 2 1 s
¥, SR HRIE SN JE 3G OR, & m iZEisBIRs e, H
W B;, D; 43 5l F 7 JE A P9 B AR b T B B A ER T
BT BRI 2. A R e SR BRI, I m R 5
R R VAR VAR /SR VA= Wi N . s B e o )
BH 7348 1) U7 ). S AMERIA) b AR B A 2
P B RE A, X TE-AN A, BT RS
S0l JB 6 — 0T S ) 94 Bl — U T BEL T AR B R IR
FE ¢ = 650 I Z1 i F G 7y, IR A2 3 e B AR

244702-5


http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn

¥ 12 ZF R Acta Phys. Sin.

Vol. 65, No. 24 (2016) 244702

WS, H T LR A A A R A P A 7 1
FiERsh, mEb N = 0.5 TR, G E
% RIS, (B IR 3h 9t 5 4T B, BLYEHE T H
N, B IRERILE A B B, WwE T N = 25150
7.

B 4 (a) HF RORFAE I Z6E BB (N = 2.5) i3
WEWE S Fios. RS aTE: 78 Co i %I, Bk
[ 52, kS is BB 1R T 1 BB
BTG, 15T 77 BIAE B R W52 ) 1 467 #% a0l 4 K
(AT b R R B 3G K, R A b 6 41 %) e
2K, T C,—Cy i, & Cy, IR E
PRBIARZS, LTI I o B TA B 5 oK i n Fe g 2
J&, BT R FE N B K, A A SR T
Y RTH R, R R, AR Y J7 ) R R
WD, W Cs, C Bt w4, gk 2 e
W, wElH O BR.

Kl 4 (b) 1 BIREAE RS ZI6E R (N = 2.5) i3

1.0

NP 6 Fra, e By 3ok LR 3 P I AR Ak e BRI
I 2, Dy X6 S2J S P9 [ A A i R iR AR 2. [ A
£ By, Do W ZI TR A0 T8 RS, SR UE, BAE &
S 18 R A RIE L AL, 2 ) R A AL 1A R 3R
RPNl N 21 e s A K VR 221 NP U3 o
B; 1 D; It ZI B0 R AR A ] 2, Fe e By I
Z, R R A AL T HERE TR, PRI AL RS R4 F 2%
RAE AR — g5k, BT By—By FR; AL
D; I Z1, BIAE R AL TR BE TPRAS, TR 1 AR
PR R B — Ui PR 5 BE Ik 58, WP v Dy—Dy
B, Bt Z oAl T IR B RS TN e 1
J1(N = 2.5) 2 Ja, |8 H: AL i i 707 A4 1 e
Car FIAEHTS, A LR, (H bR R AL 1
IRBNIZHT IR AT E, [T (4 R Jos A HE IR B T ) 2%
RIZHHH PR, WEH Bs, Bs. %%, Himis 2l
W, W By A1 Dy R

0.5 |

—-0.5 |-

—1.0 L L L L 1 L L L L 1

LA

(AT

Cy

(a)

900 1000

0.2 |

S —-0.2F

—04F

—0.6 [

4 B IR B AT A ) A T o R 1R R R ) A AR A

(a) WEIALFE Ly; (b) WA AL 1,

Fig. 4. The variations of cylinder displacement along the transverse and streamwise direction from vibration

to control with Lorentz force: (a) The displacement along the transverse direction ly; (b) the displacement

along the streamwise direction .
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Fig. 5. Vortex patterns of 2Dof VIV at the typical times C;(¢ = 0-7) from vibration to control with Lorentz
force N = 2.5.
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Fig. 6. Vortex patterns of 2Dof VIV at the typical times B;, D; (i = 0-7) from vibration to control with
Lorentz force N = 2.5.
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Fig. 9. The validations of calculation and qualitative experiment results.
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Abstract

The electro-magnetic forces generated by electromagnetic field take control of the flow in the electrolyte solution.
In this paper, the mechanism of two-degree-of-freedom vortex-induced vibration controlled by electro-magnetic forces is
investigated numerically. With the coordinate at the moving cylinder, the stream function-vorticity equations, the initial
and boundary conditions and distribution of hydrodynamic force are deduced in the exponential-polar coordinate. The
equation of vorticity transport is solved by the alternative-direction implicit algorithm. The equation of stream function
is integrated by means of a fast Fourier transform algorithm. The cylinder motion is calculated by the Runge-Kutta
method. The flow field, pressure, lift/drag and cylinder displacement are interacted along the transverse and streamwise
direction, where the instantaneous variations are discussed. The derivation shows that the vibration displacement in one
direction, whose effects on the flow field influence the vortex-induced forces in both directions, affects the inertial force
only in the corresponding direction and is independent of that in the other direction. The numerical calculations show
that the vortex-induced vibration is affected by two factors, i.e., the vortex shedding and the cylinder shift. Both of the
two factors have influences on the shear layers in the transverse direction and the secondary vortex in the streamwise
direction, which further leads to the variations of lift/drag and the cylinder motion. Along the transverse direction, the
strength of shear layer on one side is increased by the vortex shedding while the strength of shear layer on the other side
is increased by the cylinder shift. Along the streamwise direction, the pressure of cylinder tail is varied with the effect of
shedding vortex on the secondary vortex while the effect of cylinder shift on the secondary vortex is also opposite to that
of shedding vortex. Notably, the effect of cylinder shift prevails over the effect of shedding vortex so that the former is
dominated in the total effects. The flow separation and vortex shedding are suppressed as the fluid of boundary layer is
accelerated under the action of electro-magnetic forces. Meanwhile, the vibration displacements decrease gradually along
both the transverse and streamwise directions, which also suppresses the effects of pressure/suction sides. Therefore,
the vibration is suppressed and the cylinder turns steady rapidly. In addition, the thrust generated by the wall electro-
magnetic force counteracts the drag generated by the fluid electro-magnetic force, which means that the final position is
at the upstream of the initial position. The experimental results show that the vortexes on the cylinder are suppressed

fully and the flow field is steady under the action of electro-magnetic force, which agrees well with the numerical results.

Keywords: vortex-induced vibration, electro-magnetic control, fluid-structure interaction, flow control
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