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Abstract

As is well known, the development of analysis mechanics from Lagrangian systems to Birkhoffian systems, achieved
the self-adjointness representations of the constrained mechanical systems. Based on the Cauchy-Kovalevsky theorem of
the integrability conditions for partial differential equations and the converse of the Poincaré lemma, it can be proved
that there exists a direct universality of Birkhoff’s equations for local Newtonian system by reducing Newton’s equations
into a first-order form, which means that all local, analytic, regular, finite-dimensional, unconstrained or holonomic,
conservative or non-conservative forms always admit, in a star-shaped neighborhood of a regular point of their variables,
a representation in terms of first-order Birkhoff’s equations in the coordinate and time variables of the experiment. The
systems whose equations of motion are represented by the first-order Birkhoff’s equations on a symplectic or a contact
manifold spanned by the physical variables, are called Birkhoffian systems. The theory and method of Birkhoffian
dynamics are used in hadron physics, quantum physics, relativity, rotational relativity, and fractional-order dynamics.

At present, for a given dynamical system, it is important and essential to determine whether a Birkhoffian function is
the first integral of the system. Although the numerical approximation is an important method of solving the differential
equations, the direct theoretical analysis is more helpful for refining the general integral method, and more consistent
with the usual way of solving problems of analysis mechanics. In this paper, we study how to judge whether a given
Birkhoffian dynamical function to be a first integral of Birkhoff’s equations, based on the point of Birkhoffian dynamical
functions carrying all the informationabout motion of the system, and use the thought of deriving the first integrals
of Hamiltonian systems. In Section 2, the normal first-order form and the Birkhoff’s equations of the equations of
motion of holonomic systems are introduced. In Section 3, we prove that the Birkhoffian function of an autonomous
Birkhoffian system must be a first integral, and the Birkhoffian function of a semi-autonomous system must not be a first
integral. Moreover, the energy integral, cyclic integral and Hojman integral of the non-autonomous Birkhoffian systems
are given. In Section 4, two examples are given to illustrate the applications of the results. In Section 5, the full text is
summarized and the results are discussed. It is necessary to point out that the judging method is effective to determine
whether a given Birkhoffian functions can be identified to be a first integral of Birkhoff’s equations, but other new first
integral cannot be found with this method. One possible method of covering the shortage is to obtain other equivalent
Birkhoffian functions in terms of isotopic transformations of Birkhoff’s equations, and then use our results to seek the
new first integral. In addition, we also hope to develop a more direct method of obtaining the first integrals of Birkhoff’s

equations in the next study.
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