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Fig. 1. The basic frame of MRTD scattering model for nonspherical aerosol particles.
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Fig. 2. Correction area for the Yee cell distributed in scattering field and toal field.

044207-6


http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn

Y118 Z R  Acta Phys. Sin.

Vol. 66, No. 4 (2017) 044207

m’lx

Py,n+1/2 dy,n+1/2
+ Z CL(Z) (tOIHH?»Jl/Q j,k+1+1/2 - mCHzi/l/Z 7 k‘+l+1/2):| (33)

l=—Ls

I:iji5ﬁ/]{|1.7'j'é S [ mlna-[max - ]-]7 ] € [Jmln

Ls+ 1, Jmin —

1], k € [Kumax — L + 1, Kmax], B T%

XN I X, TR T AT S U 375 SR EE IS B TR, % XA % T SR A ST

EIEDy:

Ls—1

Eqﬁz n+1 E(im n+1

At
tol L 179 6 = tol 19 51 T Ay [ Z a(l)vol

l=—Jmin— ]

Ls—1

¢z,n+1/2 ¢z,n+1/2
Hili )52, + Z (l)< H L o 412,

l—_Jmin j

Ls—1
bzn+1/2 At by,n+1/2
+ mCHH—l/Z JHI+1/2, k)} N [ Z (l)tOIHzfl/Z Jrk+1+1/2
l:Kmax k
Fme ™ oy,n+1/2 dy,n+1/2
+ Z a(l)( H; y1/2 Jik+1+1/2 + lnCHzflﬂ J, k+l+1/2)} (34)
l=—Ls

PLE& R, Thxs, tol fline 20 B R n %355
BAEG BHMAN Y0 E. n@%iﬂﬁ&ﬁi&%
FT NG B U0 1) 2 R — 4E MRTD #%:5%
YIRS AR S FDTD
AL, Horb—4E MRTD £1 =4t MRTD # i ] 25 K
DAZIAR ]

3.5 ETHRMominitBEEs

OB R AUK & — MO8 AR S G Y B, R
AN, fEE BN RE P(r), TR
B M(r) = 0. AL BE IR AR A T N
exp(jwt), WIFESIEH, A5 H ) Maxwell 75 F2 7] 2

5 )y 194

V x H = jweo(E + P(r)),

V x E = —jwpuoH, (35)
ERFP(r) = xB(r) = ((r)/e0 — DE(r), x N
i b AL .

Xt (35) G — AT P IR U, FRRE R A
PR AWANCIES]

VXV XxFE
=V x (—jwpoH) = w?eopo(E + P(r)), (36)
KAREHEERV XV XE=V(V-E)-AEj#
A CIECE]
(A + wzsouo)E
= — (wleopoI + VV) - P(r), (37)

AP AT R TSR, e R, 1207 R

MREREOE 2 B A2 (38) AT (39) =K.

E;( ///Grr (wieouoI + VV)

x P(r')d®r’, (38)
AG(r,7") + wleouoG(r, ')
= 6(7‘ — ’r'). (39)

FerpRObR B B B AR A

exp(—jklr —'])
G(’l",’f‘l) = 4,]_(|,’,7,,,/| ’

Hrbk = wy/Eopo. FHEMBREI RATZ RN, 1
W R EN A

///exp —jklr —7'|)
lnC
=7

x (K*I +VV) - P(r')d%r. (41)
iy, BUERL|lr — 7| =7 — 7" - e, B L
5 AU A, AR HUR % RS T T
Esca(r) = E(T> - 1nc
exp —jkr)
4dmr ///[ €0 B 1]
x{E(r') — e, - [er - E(r)]}
x exp(jke, - r')d>r’. (42)
Hi T MRTD i 5 X 382 B85 B, Eoca 2K

FIEAE 55 585K M, ASSCR A BLT 7 it
_ k?exp(—jkr)

(40)

E.STCd ( ) 4,]_(,,,.

DIBIE]

044207-7


http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn

Y118 Z R  Acta Phys. Sin.

Vol. 66, No. 4 (2017) 044207

x {E,(i',7', k") — sin O, cos pop, - T's}
x exp(jky - i Ax + jk, - j'Ay

+jk, - K A2)AzAyAz, (43)
k? exp(—jkr)

By (r) = 2 SXPTIET)

SCa(r) 4-‘—(71
'K
TET [T ]
x {Ey,(i,5', k") — sin O, sin pop, - T's}
x exp(jky, - i Az + jky - j'Ay
+jk, - K A2)ArAyAz, (44)
2 3
EZ,(r) = k” exp(—jkr)

S

x {E.(i',j', k") — cos O, - Ts}
x exp(jky - i Az + jk, - j'Ay
+jk, - K Az)ArAyAz, (45)
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Fig. 3. (color online) Comparison of Miieller matrix between MRTD and Mie scattering model and the

distribution of relative simulation error.
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R FEIOAIE SZEGAR [F], 7EANFIRLAR 25 4F T~ R MRTD
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Mie FEig 45 BxHEL, 4595 F% 1.

#1 MRTD 55 Mie BSR4 st
Table 1. Extinction, absorption and scattering efficiency simulated by MRTD and Mie scattering model.

¥t/ HRACEIT WBKCRI T BORCER T
Mie MRTD ##%/% Mie MRTD wE% Mie MRTD ®%/%
0.1 0.4046 0.3831 —5.6121 0.0282 0.0273  —3.2967 0.3764 0.3558 —5.7898
0.5 2.9268 2.9266 —0.0068 0.2630 0.2624 —0.2287 2.6638  2.6642 0.0150
1.0 2.5596 2.5184 —1.6359 0.3711  0.3678 —0.8972 2.1884 2.1506  —1.7577
2.0 2.3970 2.2874  —4.7915 0.5652  0.5537 —2.0769 1.8317 1.7337  —5.6527
& 1A AL, ASFEDRLAR 64, MRTD 5 Mie BN T 0.5%.

SRR T 6 RSORS00 6 IR AR R 22
B4 6% LN, Ba ik 1 A R AR A0 45 LI — B
MRTD 5 Mie 3 i 0L 45 5L (1) 43 1% 22 2 0N £
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Fig. 4. (color online) The illustrations of the parameters for spheriods and cylinders.
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Fig. 5. (color online) Comparison of Miieller matrix of spheriod simulated by MRTD and T matrix method.
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%2 MRTD 5 T ARSI TE 6 ISR 28 IR 7 4 SR e
Table 2. Extinction, absorption and scattering efficiency simulated by MRTD and T matrix method.

Bl /um THIERCRE T W R &SRS
T4EFE  MRID  i#2%/% T4EFE  MRTD  i#%/% THFE  MRTD  i%%/%
0.1 0.4016 0.3843 —4.5017 0.0284 0.0265 —7.1698 0.3732  0.3578 —4.3041
0.5 3.2121  3.2118  —0.0093 0.2377  0.2372  —0.2108 2.9744 2.9746  0.0067
1.0 2.7763  2.7376  —1.4137 0.4156  0.4108 —1.1685 2.3608 2.3268 —1.4612
2.0 2.2755 2.1893  —3.9373 0.5841 0.5673 —2.9614 1.6914 1.6220 —4.2787
4.2.2 ALK TS FoA S Fyy, 78BS 00—90° [X 8], 15 3 (A AH
4.2.2.1  FBEHEFE R HIGIE i ZE 45 3% LA, 7E Ji 13 BUR 7 171, P B R AR

FER AR T R, B MRTD F1 T 4 [ 2
BRI SRR, 45 Rl 6 Fros. B R, A
S K IR R A B ks B ) 8 B R 1
FEARTRE, R 7 EIrEHE N 1.53 — 0.0081, HiEEEL
ND/L =1.0.
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Fig. 6. (color online) Comparison of Miieller matrix of cylinder simulated by MRTD and T matrix method.
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4.2.2.2  BURTH 6 R ISOSCR TR T R B BGIE

SR E SRR IRUE SR AR R, FEANFSE
MR RLAR (S5 R RR) 26 4F T, 20 3R ] MRTD
F5E IR 55 T R B AU B A AL 9 016 BRI S 2
KT, T HMEMRWZE, 85 RWER 35, 5
AERRL 515 IR0, Ry LAy 4 i SR P S5 RORR AR 2
(e 8

13 3 AT A1, MRTD DL 1R 73 B 5 4
5 TR FEEBAE AT, Hrh R H 1 R

FEXT R 22 /N T 5.5%, MRS TR 7 e K A 22 10N
8.745%. FHELT &, WS AL 38 B 5~ PRI AH X i 22 B K
T AU B R T, H R R BT RSO T A
FRHE N BB, SERIE I ERRL 715 T 2810, kL
TFEHERIE A5 5 N FHEBAAR A, R 75U R
PERSAOL (RGP e e, B LT AR M 252 R, B
PRZERE 2 HK. MRZER 5010 EF, MRTD #1
RUBEAR b 2 W ARG il 17 520 A T 62 7 P 3 R WA
Rk,

#3 MRTD 5 T 5 K¢ BEARRLIL I ' TR SORT B 2803 R 745 SRn b
Table 3. Extinction, absorption and scattering efficiency simulated by MRTD and T matrix method.

Bt Jum NPl & eSS WS R IS
T4 MRTD  i#%/% THFE MRTD  #%#/% THFE MRTD  i##/%
0.1 0.4041 0.3835 —5.37158 0.0286  0.0263 —8.74525 0.3756  0.3572 —5.1512
0.5 2.9408  2.9402 —0.02041 0.2373  0.2368 —0.21115 2.7035 2.7034  —0.0037
1.0 2.8215 2.7916 —1.07107 0.4251  0.4184 —1.60134 2.3964 23732 —0.9776
2.0 2.5791  2.4997 —3.17638 0.6283  0.6069 —3.52612 1.9508  1.8928  —3.0642

4.3  MIRHAMAXHRINE BRI

WK R AH DL E T KL T AR BOAS 2, kg
TR R R AL A M. RS A, R T TR
PRFFAE IR R 47, 5 RIS - 555 5 P A7 9 R B 2
TG, PR 0 AN ] RUBERL T 176 96 1 22 FH 40 1) Y
I, WMEETEIHEESRENTER T A LE
(. ot AR 3 T U KR 40 S R RS
R CIESREREP LN AR

BN A N 0.55 um, R IER AERTE,
P15 H R 1.33—0.0101, 40 B BURL 722 80.1,
0.5, 1.0F12.0 pm, & & MK H I 6 2 A/10, A/20,
/30, A/40, A/50 F1 \/60, 435K H MRTD 1 Mie
RS B ASSADURL T R o IR USRI R - S B
B, e B VP MRTD B AR B2, VH G AR
W 3%k 2R IR 7 AR B R I MIRT'D 5 Mie iU A5 78 A
OLGE SR ARRE Rl 22 FRAE 5 BRCE O' 2 18] 7 A e 1k B A
NG K FH Py I35 R 22 RSE RAE, e X
R

1 N

RSE = [ 3 (Fll(ai)MRTD — Fll(ei)Mie>2:| 1/2.

N

P F11(0i)mie

(61)
THEAS B A FPRLAR 26 7F N MRTD # 2 5 Mie
FICRS A5 TR [ B 2 JORRAUAE X i 22 40 4 BT 81,

B 4] N, BE A TF S A I A Ak, R
SRR T S SO0 B R AR R, L T RLAR N
1.0 pm KT, 296 M A/10 ZE4LEE N /60 I, Qex A1
Qan MIFEALIR 2 23 51 1 13.5122% A1 10.2059% ¥k /)N
£ 1.0634% F11.1583%. ki1 RES KN T 22
i, AH PR R A 261 R, BL TR 5 A SR K
AR T, MRTD J7 V5 B0 )R - B4R P A B
o ST RESH e 208 1, 5, 10 F120 FIRLT, 251
LS A K AR BN /60, A/30, \/40 A1)\ /40 B
A R oK.

4.4 BRRGITHERERD

BE— 25 7 At MRTD B8 132 47 3%, BT T
HHLE CPU & Intel(R) Core i5, 3:4%3.1 GHz, K
178 GB, B &2 48 Win7 #:4E &2 48 Al Fortran 90
Compiler. R # 4.3 7 H B 52 (19 R A £ 190 4% 7] [,
3 SRR AT 5 236 S KT S %6 i i S — M S ¢t
SR =S T HORL T B R, IR Gt B TR is AT I
], Wk 5 fr4il.

1 5 AT, B R A2 R 1 K, AR S PR B0 R
PR (BRI K, Hd YRR 0.1 pm i, 32
AT TRAXAN M 285 s, R4 4 3.0 wm B, AL [i]
1I5 2.8855 x 105 s; 5 e S AR 0 A AR Ak FEAN
4 I 3 Hh OB R P 38 AT (1 B ).
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Fd THELIRE (] EECTRE TR R AR DU L S

Table 4. The influence of grid size on the simulation accuracy of aerosol scattering properties.

btz /um A/5() 10 30 40 50 60
Qex — —17.5293  —9.3715  —7.9723  —6.3938  —5.8603
0.1 (z = 1.142) Qab — —18.3243  —10.3584 —8.0765 —6.1977  —5.2646
RSE of Fi; — 8.1120 7.6647 6.8100 5.9114 5.8387
Qex —11.5634  —4.2063 —1.7057  —0.5397  —0.0075  —0.0065
0.5 (z = 5.71) Qub —10.2059  —6.2234 2.0043 —0.4373  —0.0105  —0.0072
RSE of Fiy 11.3452 7.0741 3.9094 2.6861 2.0295 1.9237
Qex 13.5122 6.8600 —2.0246 1.7472  —1.5665 —1.0634
1 (x=11.4) Qub 15.6431 7.3178 —3.1255  —2.9433  —2.4672 —1.1583
RSE of Fi; 26.7099 11.8215 6.6020 5.0634 4.0572 3.8512
Qex —8.9119 —6.4559 3.2945 —1.9842  —1.5256  —1.3567
2.0 (z = 22.8) Qab —9.9452 —7.7522 3.7521 —2.2554  —1.6259  —1.2655
RSE of Fyy 20.4248 14.9946 8.6539 6.5628 5.7854 4.2212

M HIN/S = 10, KiAEN 0.1 pum MR FAH 4 ANTOMARE, AU IR ARSAE, AT n% 25,

R5 AFRARKL T B BB RS B 1R 2 i

Table 5. Computational time for particles with different radius and space resolution.

m = 1.33 — 0.008i

m = 2.53 — 0.000i

m = 1.33 — 0.751

4% /um
Time/s 26 Time/s VA Time/s bV}
0.1 285 60 279 60 294 60
0.5 1854 30 1903 30 1887 30
1.0 20014 40 20058 40 20158 40
2.0 1.7046 x 10° 40 1.7067 x 10° 40 1.7093 x 10° 40
3.0 2.8855 x 105 30 2.8843 x 10° 30 2.8899 x 10° 30
F- 8%, HI AU 7 N F 4%; 4R 5 A6
5 & b KAH 2 I, ' AR AR R AR R 2= N T

BRI S 1 HC T AR5 1 2 5 i B A A% i i
FEMEZR R, P m S A E BRI A5 I B HU
PERSLEE 7, F T 5 B2 I MRTD AR 51
BRI, S TE TR h &
TR I 3 M T 5, 50 T B TARFRAR
(R0 RE - P WSO AR TR Y6 AT S O R T BT R,
¥ MRTD BUR A 5 Mie SRR | T 48 B A5
P2 R BEAT T X ERBRAE, 20 AT A% KNGS R
FERIREI. EEEERIT

1) MRTD U 5 Mie B¢ T 55 REZ AR
LG R — BRI, e R R P e AR R 22 /)

0.1%;

2) 7% [ ) R RH A ASEADURE 82 R 5523 >R
RIEZHUNT 2006, EAHFIRS FEZERN, i ds A%
(71 b R 2 0 5 el N J5 386 0 R AR AE, L
MNP SR TR 240, T B Yee JUHE
i/

3) 5 FDTD K& PSTD Ak, AAE A 13847 B[]
B 5 0 - A% B3 KRS N, R — 2D T R
B HEAT FRAT A AR B AR i BB (R 1B AT 3R

TR AR A0 I T A 2 B A T 2 o LR B B 00 5
N TR 5 0 5 S 6 2 R % B T S W L
BT TR 1 S
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Abstract

Scattering process of aerosol particles plays an important role in atmospheric radiative transfer since it can modify
the transmission, reflection and absorption ability of atmospheric system. Owning to the uncertainty of aerosol particles’
scattering properties, which results from their complicated geometries and inhomogeneous compositions, there still
exists a considerable uncertainty in the radiative transfer numerical simulation, and simulating the scattering properties
of aerosol with irregular shapes has become a hotspot in meteorological study. To this end, a new aerosol scattering
model is developed based on multi-resolution time-domain (MRTD), by which the scattering processes of nonspherical
and inhomogeneous particles can be simulated. In this model, the near electromagnetic field is calculated by MRTD
technique. Considering the particularity of aerosol medium, a transformation technique from near field to far field is
derived based on volume integration method, and then the scattering amplitude matrix and Miieller matrix can be
calculated by the obtained far electric field as well. The models for particle extinction and absorption cross section are
derived from Maxwell’s curl equations in the frequency domain, by which the integration scattering properties can be
simulated accurately. The MRTD scattering model is validated by comparing with Mie theory and T matrix method for
spherical particle, ellipsoidal particle and cylindrical particle, and the influence of grid size on the simulation accuracy
is analyzed subsequently. In the last part, the efficiency of the MRTD scattering model is quantitatively discussed. The
simulation results show that the relative errors of scattering phase function simulated by our model are less than 8%,
and the errors in forward scattering direction are much smaller, which are less than 4%. The precisions for extinction
and absorption efficiency are much higher than the results from the scattering phase function, and the relative errors
can reduce to 0.1% for particles with their radii comparable to the wavelength of incident light. The gird size has a
significant influence on model precision; to achieve the same accuracy, the grid size first increases with increasing particle
radius, and then decreases as a function of particle size for particles with size parameter less than 20. In the next step,
we will try to establish the scattering property database of nonspherical particles based on the MRTD scattering model
developed here.

Keywords: nonspherical aerosol, scattering properties, multi-resolution time-domain, Miieller matrix
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