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Fig. 1. Flowchart of numerical algorithmfor immersed

boundary method.
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Fig. 2. Interpolation stencil of ghost cell method.
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Fig. 3. Stencil for adjacent grid nodes.
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Fig. 4. Identifying phase state of background grid (F,
fluid cell; G, ghost cell; S, solid cell).
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Fig. 5. Geometry model of flow around cylinder.
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Fig. 6. Instantaneous vorticity contours of flow around
cylinder in three Reynolds number: (a) Re = 40;
(b) Re =100; (c) Re = 200.
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Table 1. Comparison of lift and drag coefficient in the

case of flow around cylinder.
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1.5 ! ! ! !

[0 0057 "SIt ¢ R | | R [ L A R O O A

Cy, Cp

oy a a a a
0 20 40 60 80 100
t/m-s~1

KI7  Re = 200 i FHBH 7 A 1] P e ih 2%
Fig. 7. Evolution history of drag and lift coefficients
at Re = 200.
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Fig. 8. Instantaneous pressure contour of airfoil.
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Fig. 9. Boundary layer velocity profile along y-direction :
(a) velocity u; (b) velocity v.
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Fig. 10. Instantaneous fluid field of cylinder group at

Re = 100: (a) Pressure contours; (b) vorticity contours.
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Fig. 11. Instantaneous fluid field of cylinder group at

Re = 200: (a) Pressure contours; (b) vorticity contours.
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Fig. 12. Comparison of drag coefficients of cylinder
with center coordinates (0, 0) at Re = 100, 200.
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Abstract

A radial basis function ghost cell immersed boundary method of simulating flows around arbitrary complex or
multiple immersed boundaries is proposed in this paper. In this method, incompressible Navier-Stokes equations are
discretized on fixed Cartesian staggered gridby the finite difference method. A fractional step method is used for time
integration, together with third order Runge-Kutta scheme. A high-order TVD MUSCL (total variation diminishing
monotonic upstream-centered scheme for conservation law) scheme is used to discretize convective terms. Two salient
features are emphasized in the present study. First, boundary conditions at the immersed interface are enforced by a
continuous ghost cell method to consider the influence of immersed boundary on the flow field. The immersed bodies are
treated as virtual boundaries immersed in the flow. And Navier-Stokes equations are solved in the entire computation
domain, including solid domain. Therefore, programming complexity is greatly reduced and the treatment of immersed
boundaries is simplified. Second, a polynomial and radial basis function is introduced to implicitly represent and
reconstruct arbitrary complex immersed boundaries. Iso-surface distance functions about interface geometries are fitted
with some sampling points of body surfaces. It is flexible and robust. Moreover, the information about interface
positions on the background grid can be easily identified by the signed distance functions. Based on our in-house
developed immersed boundary method solver, typical test cases are simulated to validate the proposed method. The
flows around a cylinder at Reynolds numbers of 40, 100 and 200 are first simulated and a grid resolution study is carried
out. Good agreement is achieved by comparing with previous numerical results, which shows that this method is accurate
and reliable. In the second case of flow around airfoil, the good agreement with previous study shows that the present
method has the ability to simulate complex immersed boundary flow. In the last case of flow around array of thirteen
cylinders, the ability of present method for multiple immersed boundaries is well proved. And hydrodynamic interaction

among multiple bodies is briefly analyzed.

Keywords: immersed boundary method, radial basis function, ghost cell method, complex boundary
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