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Fig. 1. Principle diagram of CPMG sequence and
NMR echo curve in LF-NMR measurement.
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Fig. 2. (color online) Non-negative SVD inversion re-
sult of a smooth model: (a) NMR echo curve; (b) T»

spectrum.
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Fig. 3. (color online) L1 sparse inversion result of a

sparse model: (a) NMR echo curve; (b) T% spectrum.
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Fig. 4.

(color online) Comparison of the inversion results between the smooth and sparse models: (a) NMR echo

curve of the smooth model; (b) NMR echo curve of the sparse model; (¢) T> spectrum of the smooth model; (d) T>

spectrum of the sparse model.
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Fig. 5. (color online) Comparison of inversion results of the multimodal model with different peak numbers:

(a) Single-peak T» spectrum; (b) two-peak T spectrum; (c) three-peak T spectrum; (d) four-peak Tb

spectrum.
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Fig. 6. (color online) Comparison of the inversion results T> spectrum with different SNRs.
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Abstract

The technology of low-field nuclear magnetic resonance (LF-NMR) is commonly used in food, agriculture, energy
and chemical sectors due to its non-destructive, non-invasive, in situ, green and other advantages. Recently, this tech-
nology played an increasingly large role in the field of food-safety supervision especially. In oil product quality testing,
conventional 7> spectrum inversion methods such as the non-negative singular value decomposition (SVD) algorithm
can only reflect T» spectrum in a smooth model. However, for a sparse model, the inversion result of non-negative SVD
algorithm is expected to be very glossy, leading to low resolution of 75 spectrum and inaccurate analysis of sample
property. To solve this problem, we propose a sparse 7% spectrum inversion algorithm based on the L1 norm mini-
mization constraint. In this paper, we establish the sparse model expression of NMR echo curve, and obtain the T5
sparse spectrum inversion results based on the inner truncated Newton-point method. Furthermore, the effectiveness of
L1 sparse inversion algorithm is examined by the synthetic data of the smooth model and the spare model which have
different peak numbers and signaltonoise ratios (SNRs). Synthetic results show that compared with the non-negative
SVD algorithm, the L1 sparse algorithm is appropriate for both the smooth model and the sparse model with higher
inversion accuracy. When the number of T3 peaks in a sparse model changes from a single peak to a quad peak, the L1
sparse algorithm can still obtain accurate inversion results, while the SVD algorithm results in a gradual deterioration,
and cannot even determine the peak number. Under the sparse model, when the SNR of the measured NMR curve is
gradually changed from 5 dB to 50 dB, the L1 sparse algorithm at 20 dB or more can obtain accurate inversion results
which have less than 10% peak error and less than 5% peak position error and amplitude average error. However, the
non-negative SVD algorithm cannot obtain accurate results at each SNR. Finally, multiple sets of frying oil samples are
utilized to prove the accuracy and robustness of L1 sparse inversion algorithm. Inversion results of seven sets of frying oil
samples show that the L1 sparse algorithm prefers the non-negative SVD algorithm. The obtained T» spectrum by the
L1 sparse algorithm shows three peaks obviously, and the T»; peak area ratio S2; and the single component relaxation
time T, are higher linear with respect to frying time than the results by non-negative SVD algorithm, which is useful
for detecting the frying oil quality change. The inversion results of the 75 spectrum at different SNRs are consistent
with the synthetic results, i.e., when the SNR is reduced, the T> spectrum inversion results from the L1 sparse algorithm
are better than those from the non-negative SVD algorithm when SNR is greater than 20 dB.

Keywords: lowfield nuclear magnetic resonance, T spectrum inversion, sparse representation, L1-norm

minimization constraint
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