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基于L1范数的低场核磁共振T2谱稀疏反演方法
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低场核磁共振技术 (LF-NMR)以其无损、非侵入、原位和绿色等优势被广泛应用在食品、农业、能源和化
工等行业, 尤其是在食品安全监管领域发挥着越来越重要的作用. 在油品品质检测中, 常规非负奇异值分解
(SVD)弛豫 (T2)谱反演方法, 只能反映光滑模型的T2谱, 对于稀疏模型的反演结果存在较大差异, 从而导致
T2谱反演分辨率低和品质分析不准确的问题. 针对这一问题, 本文提出基于L1范数最小化约束的T2谱稀疏

反演算法, 建立NMR回波曲线的稀疏模型表达式, 利用截断牛顿内点法求解L1范数最小化问题, 得到稀疏
模型的T2谱反演结果. 通过构造光滑模型的T2谱、以及不同峰值数和信噪比的稀疏模型的T2谱, 对比非负
SVD算法和L1稀疏算法的反演效果, 得到当信噪比大于 20 dB时, L1稀疏算法能精确反演多峰T2谱, 峰值
幅度和峰位置均优于非负 SVD算法结果. 最后通过多组煎炸油样品进行低场核磁共振检测实验和不同信噪
比数据的反演结果对比, 验证了L1范数稀疏反演算法的准确性和优越性.

关键词: 低场核磁共振, T2谱反演, 稀疏模型, L1范数最小化约束
PACS: 76.60.Es, 82.56.Na DOI: 10.7498/aps.66.047601

1 引 言

食品安全不仅与广大人民群众的身体健康和

生命安全密切相关, 而且关系到社会稳定和经济
发展. 自 2010年至今, 地沟油、瘦肉精、塑化剂超
标、镉大米等事件频发, 食品质量和食品安全问题
已成为社会反映强烈的热点问题. 面对不法食品
的泛滥, 亟需有效和可靠快速的检测方法监测食
品健康, 保障食品安全. 自 1946年发现核磁共振
(nuclear magnetic resonance, NMR)现象以来, 核
磁共振技术已发展成为一种重要的分析和检测技

术, 并广泛应用于农业食品、能源勘探、高分子材
料和生命科学等领域 [1−3]. 以 0.5 T的磁场强度为
界将核磁共振现象分为高场核磁共振 (high field
NMR, HF-NMR)和低场核磁共振 (low field NMR,

LF-NMR), 前者主要用来分析物质的化学性质, 而
后者用来检测物质的物理特性. 相对于HF-NMR,
LF-NMR的优势在于仪器成本低、体积小, 能够实
现原位、实时和快速测量 [4], 同时对检测样品具有
非破坏性、非侵入性和无污染等特点, 在食品安全
监管领域发挥着越来越重要的作用, 对于劣质油
脂检测、注水肉检测、牛奶掺假、致病菌和重金属

离子的检测等具有显著的应用潜力 [5]. 然而, 由于
LF-NMR磁场强度较低, 导致检测分辨率不高, 因
此通过改进反演算法来提高有害食品成分的检测

分辨率和准确性, 对于LF-NMR方法能否有效用
于食品安全检测方面至关重要.

目前, 国内外针对LF-NMR技术进行煎炸油
品质测定, 主要是基于T2谱分析方法. 文献 [6]在
实验室内对经过 60 h煎炸的大豆油进行取样, 得
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到LF-NMR检测的弛豫图谱 (简称T2谱)峰值与豆
油的酸价、黏度、吸光度和极性组分含量等具有

良好的相关性, 由此可以评价豆油的油品品质.
文献 [7, 8]对掺兑了煎炸油的油样进行了检测, 从
LF-NMR的T2谱中可以发现煎炸油的特征峰, 且
随掺入比例增加而峰值幅度线性增大. 然而, 由于
LF-NMR的磁场强度低, 当样品中煎炸油含量少或
受噪声影响时, 反演得到的T2谱分辨率有限, 与煎
炸油含量的线性度差, 甚至难以区分煎炸油的特征
峰. 因此, 在LF-NMR技术中亟需解决低磁场强度
情况下如何提高T2谱反演分辨率的难题.

近20年来, 国内外关于NMR反演算法的研究
取得了重要进展, 提出了包括非负最小二乘法 [9]、

罚函数法 [10]和非负奇异值分解法 (singular value
decomposition, SVD)等 [11]算法. 很多学者对这些
算法进行了优化, 文献 [12]等提出了一个基于L2
范数最小约束的正则化算法, 提高了T2谱分布的

连续性, 但是由于光滑参数的作用会造成T2谱的

畸变. 文献 [13]通过对系数矩阵添加阻尼项来优
化非负SVD分解法, 在一定的误差容忍范围内可
以接受, 混有噪声时得不到理想的结果. 文献 [14]
等通过建立信噪比和奇异值最佳保留个数的关系

来改进非负SVD的截断, 但需要事先计算信噪比
(signal to noise ratio, SNR). 可见, 非负SVD算法
是较为常用的反演算法, 但是通过该算法得到的T2

谱一般都是连续分布的, 对于单一匀质样品或只含
有几个离散T2值的样品, 非负SVD反演结果过于
光滑, 不能反映出离散或稀疏的T2谱. 文献 [15]结
合非负最小二乘法和非线性拟合方法进行多指数

反演, 提高了T2谱的分辨率, 然而该方法将T2值

也作为反演参数, 增加了反演结果的不确定性. 文
献 [16]在此基础上, 提出利用线性回归最小二乘方
法, 改进了非线性优化算法, 加快了收敛速度. 但
是此类算法需已知T2谱线个数, 其结果依赖于初
值和SNR, 当SNR较低时, 反演结果存在较大的误
差. 因此, 在未知谱线个数和低信噪比情况下, 如
何获得稳健的稀疏结果是目前T2谱反演算法急需

解决的难点之一.
稀疏表示 (sparse representation)方法是信号

处理、图像恢复和无线通信等领域研究的热点问题,
在信息提取和参数分析等方面具有复杂信号稀疏

化、特征差异明显和噪声影响小等优势 [17]. 通过建
立NMR回波信号在T2谱上的稀疏表示模型, 求解

L0范数最小化约束问题获得稀疏系数, 即T2谱的

幅度. 但是L0范数最小化是一个NP难问题, 进而
转化为L1范数的凸优化问题, 因为L1范数最小化
存在惟一的全局最优解. 因此, 随着信号稀疏表示
方法的不断发展, L1范数最小化问题的求解算法
备受关注, 如贪婪算法 [18]和迭代收缩算法 [19]可以

较好地解决这一优化问题, 但通常受到数据量和模
型维度的限制; 同伦算法 [20]和内点法 [21]可用于处

理大型的高维数据, 但需要大量的计算时间和迭代
次数. 截断牛顿内点法 [22]是在内点法基础上, 采
用预处理共轭梯度 (preconditioned conjugate gra-
dient, PCG)算法计算搜索步长, 减少了计算时间,
从而可以快速地处理大型数据, 常应用于光学分子
影像、无线电通讯、人脸表情识别等方面. 文献 [23]
提出L1范数可应用于NMR回波数据反演, 并从数
学上证明了迭代软阈值法、最大熵法和最小面积法

都等价于最小L1范数反演问题. 文献 [24]将L1和
L2范数同时应用于T2谱反演, 改善了峰值失真问
题, 但该方法需要优化选择正则化参数, 且反演结
果介于光滑和稀疏模型之间. 因此, 目前利用L1范
数进行低场NMR稀疏反演的研究较少, 且T2谱的

反演仍存在低信噪比数据反演效果差和分辨率低

等问题.
本文以提高低场核磁共振T2谱分辨率为目标,

将稀疏理论引入T2谱反演方法, 提出了一种基于
L1范数最小化约束的T2谱稀疏反演算法 (以下简
称L1稀疏算法), 通过仿真NMR回波数据对比分
析了非负SVD算法和L1稀疏算法在光滑和稀疏
T2谱模型下的反演结果, 最后进行了煎炸油样品
的低场核磁共振实验和T2谱反演, 验证基于L1范
数最小化约束的T2谱稀疏反演算法的准确性和优

越性.

2 低场核磁共振原理

低场核磁共振技术通过施加射频脉冲使样品

中的氢质子 1H发生共振,脉冲停止后 1H释放能量,
其磁化矢量M不断衰减, 其中横向磁化矢量Mxy

的衰减过程称为横向弛豫, 将Mxy衰减到 37％的
时间为横向弛豫时间T2, T2及其对应的幅值构成
了T2谱, 通过对样品T2谱的相关信息进行分析, 得
到检测样品的品质.
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2.1 低场核磁共振测量序列

低场核磁共振实验通常发射两种测量序

列: 自旋回波 (SE)序列和CPMG (Carr-Purcell-
Meiboom-Gill)序列. SE序列是先发射 90◦脉冲,
在半回波间隔 τ 时刻施加一个 180◦ 脉冲, 并在
2τ时刻获得自旋回波信号的峰值, 通过改变 τ值,
分别施加 90◦和 180◦脉冲, 即可获得多个自旋回
波信号. CPMG序列在SE序列基础上, 多次施加
了 180◦脉冲, 从而得到多个衰减的自旋回波信号.
CPMG序列及自旋回波信号示意图如图 1所示, 在
t = 0时刻施加一个 90◦脉冲, 经过 τ时间后施加

第一个 180◦脉冲, 可在 t = 2τ时得到第一个回波

信号; 在 t = 3τ时继续施加第二个 180◦脉冲, 在
t = 4τ时刻得到第二个回波信号. 依此类推, 每在
t = (2n− 1)τ时刻施加一个180◦脉冲, 在 t = nτ时

刻即可得到一个回波信号, 这些回波信号的峰值是
一条按指数衰减的曲线, 即NMR回波曲线.

90° 180° 180° 180° 180°

τ 2τ 2τ 2τ

0τ 2τ 4τ 6τ 8τ

图 1 低场核磁共振CPMG序列测量和NMR回波曲线
原理图

Fig. 1. Principle diagram of CPMG sequence and
NMR echo curve in LF-NMR measurement.

NMR回波曲线的函数表达式为

y(t) =
m∑
i=1

xi · e−
t

T2i

t = 2nτ (n = 1, 2, 3, · · ·), (1)

其中 τ为半回波间隔时间, n为回波个数, y(t)为 t

时刻所对应的回波信号的峰值幅值, m为弛豫分量
个数, xi为各弛豫分量的幅值 (i = 1, 2, · · · ,m); T2i
为各弛豫分量的衰减时间, T2i和xi一一对应, 构成
T2谱.

2.2 T2谱反演方法

T2谱反演是根据NMR回波曲线, 通过设定适
当的各弛豫分量的衰减时间T2i, 计算得到系数矩

阵A = (a{i,j}){n×m}, a{i,j} = e−
2jτ
T2i (加其中), 从

而建立一个y = Ax形式的线性方程组. 通过反演
算法求解该方程组, 即可获得衰减时间T2i所对应

的弛豫分量.
目前, T2谱反演常用的方法是非负SVD法 [11].

通过非负SVD算法反演得到的T2谱是连续分布

的, 如图 2所示. 图 2中仿真了一个T2谱的光滑模

型, 布点数为 36, 按指数分布在区间1—104 ms. 设
回波间隔 2τ = 12 ms, 回波数n =1500. 根据 (1)
式计算系数矩阵A和回波信号y, 如图 2 (a)所示.
利用非负SVD算法进行反演, 结果如图 2 (b) 所
示, 其中黑色线为仿真的T2谱模型, 蓝色线为非负
SVD算法反演得到的T2谱, 两者符合较好, 仅在
T2较小时存在一定的误差. 因此,非负SVD算法对
于这种光滑模型的T2谱反演效果较好. 但是, 对于
单一匀质样品或只含有几个离散T2值的样品, 非
负SVD反演结果过于光滑.
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图 2 (网刊彩色)光滑模型非负 SVD反演结果 (a) NMR
回波曲线; (b) T2谱

Fig. 2. (color online) Non-negative SVD inversion re-
sult of a smooth model: (a) NMR echo curve; (b) T2

spectrum.

3 L1范数稀疏反演算法

基于L1范数最小化的T2谱稀疏反演算法将弛

豫分量T2幅值的L1范数进行最小化约束, 从而转
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化为一个凸优化问题, 并利用截断牛顿内点法求
解, 得到T2谱稀疏模型下的最优解.

3.1 稀疏模型的L1范数最小化约束

在低场核磁共振的实际应用中经常需要处理

一些稀疏的T2谱, 因此在分析和处理NMR回波信
号时, 建立如下的稀疏模型:

min ∥x∥0 s.t. y = Ax, (2)
其中 ∥x∥0是x的L0范数, 即x向量中非零元素的

个数; x = [x1, x2, · · ·, xm]T是字典A的稀疏系数,
表示未知的弛豫分量幅值, L0范数最小化约束保证
了x中仅有少量元素不为零; y = [y1, y2, · · ·, yn]T

表示NMR回波信号; 矩阵A = (a{i,j}){n×m}为

稀疏模型的字典. (2)式为n个含有m个未知数

x1, x2, · · ·, xm的线性方程组.
由于表达式 (2)中的L0范数最小化问题是一

个NP难问题, 而L1范数是L0范数的最优凸近似,
而且更容易优化求解, 考虑到实际观测信号中必然
会存在噪声, 因此根据表达式 (2)建立基于L1范数
最小化约束的含噪稀疏模型:

min ∥x∥1 s.t. ∥Ax− yobs∥2 6 ε, (3)

其中 ∥x∥1 =

n∑
i=1

|xi|为x的L1范数, ∥ · ∥2表示L2

范数, 参数 ε > 0表示允许的误差, 由含噪回波信号
yobs的噪声估计值计算得到.

3.2 截断牛顿内点法

截断牛顿内点法是在内点法的基础上 [22], 建
立特定的对数障碍函数和中心路径, 并通过预处理
共轭梯度 (PCG)算法, 按一种截断机制来计算牛
顿系统的近似解, 从而减少计算时间.

表达式 (3)中的L1范数最小化问题是含有不
等式约束的线性规划问题 (linear program, LP) [25].
根据正则化的思想, 并设变量w = Ax − yobs, 可
将 (3)式转化为二次规划问题, 作为内点法的原问
题 (P):

P :min{fp(x) = ∥w∥22 + λ∥x∥1}

s.t. w = Ax− yobs, (4)
其中, fp(x)为原目标函数.

根据拉格朗日乘子法可得到相应的拉格朗日

函数和对偶问题 (D), 如表达式 (5)和 (6)所示:
L(x,w,v)

= ∥w∥22 + λ∥x∥1 + vT(Ax− yobs −w), (5)

D : max{fd(v) = inf(L(x,w,v))}

s.t. λ > |ATv|, (6)

其中, fd(v)为 fp(x)的对偶函数, 构造的对偶可
行点为v = 2τ(Ax̄ − yobs), τ为比例常数. 原
目标函数与对偶函数的差值为对偶间隙 gap =

fp(x)− fd(v), 通过最大化对偶函数 fd(v), 可得到
对应的最优解v∗和最小的对偶间隙.

根据截断牛顿法, 将表达式 (4)中的原问题P
转化为一个等价的凸优化问题:

min ∥w∥22 + λ
m∑
i=1

ui s.t. − ui 6 xi 6 ui. (7)

不等式约束−ui 6 xi 6 ui的对数障碍函数φ(x,u)

可表示为

ϕ(x,u) = −
m∑
i=1

lg(ui + xi)

−
m∑
i=1

lg(ui − xi). (8)

因此, 原问题P的无约束形式为

min
{
ψt(x,u) = t∥w∥22 + t

m∑
i=1

λui + ϕ(x,u)

}
.

(9)

函数ψt(x,u)是一个光滑、有下界的凸函数,
有惟一的最小值, 在计算其最小值的过程中, 产生
了一条受参数 t影响的曲线, 被称为中心路径. 参
数 t的定义为

t :=


max{min{2nr/gap, rt}t}, s > smin,

t, s < smin,

(10)

其中 r > 1和 smin ∈ (0, 1]是预设的参数, s = βk为

回溯线搜索的步长, k 为满足回溯搜索条件 (11)的
最小回溯次数, α, β为预设参数.

ψt(x+ βk∆x,u+ βk∆u)

6ψt(x,u) + αβk∇ψt(x,u)
T

∆x

∆u

 . (11)

利用PCG算法求解如下的牛顿系统 (12), 便
可得到搜索方向:

∇2ψt(x,u)

∆x

∆u

 = −∇ψt(x,u). (12)
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根据截断牛顿内点法, 解决L1范数最小化约束问
题 (3)的算法步骤如下:

α = 0.01, β = 0.5, r = 2, s = 1

λ = 1, ε = 0.01,x = 0,u = 1

t = 1/λ

while (gap/fd) > ε do

∇2ψt(x,u)[∆x; ∆u] = −∇ψt(x,u)

s = βk

x = x+ s∆x

u = u+ s∆u

fp = ∥Ax− yobs∥22 + λ∥x∥1
v = 2τ(Ax̄− yobs)

fd = −(0.25vTv − vTyobs)

gap = fp − fd

t = max { min(2nr/gap, rt), t}

end while

3.3 反演结果

构造一个T2谱的稀疏模型, 布点数为 36,
指数分布于 1—104 ms, 如图 3所示. 回波间隔
2τ = 12 ms, 回波数n = 1500, 通过计算得到NMR
回波曲线,如图 3 (a)所示.图 3 (b)中黑色星线为仿
真模型, 红色线为利用 L1 稀疏算法进行反演得到
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图 3 (网刊彩色)稀疏模型和L1稀疏反演结果 (a) NMR
回波曲线; (b) T2谱

Fig. 3. (color online) L1 sparse inversion result of a
sparse model: (a) NMR echo curve; (b) T2 spectrum.

的T2谱. 通过对比可以看出, L1稀疏算法得到的
T2谱与构造的稀疏模型基本一致, 各点的误差均较
小. 因此, L1稀疏算法对于稀疏模型下的T2谱反

演效果较好.

4 仿真模型反演分析

为了验证L1稀疏算法和传统的非负SVD法对
于光滑模型和稀疏模型的反演效果, 对比两种方
法在处理不同T2峰值数的稀疏模型时反演准确度,
以及验证不同信噪比下的稀疏模型反演结果, 本文
建立了多组仿真模型进行反演实验.

在实验过程中, 涉及到信噪比 (SNR)的计算
公式为

SNR = 10× lg ∥y∥2
∥yobs − y∥2

, (13)

其中, y为根据 (1)式得到的模拟理想回波信号,
yobs为加入一定比例噪声之后的含噪回波信号.

设构造的T2谱模型中T2峰的峰值数为k, 峰
值为h0k, 对应的弛豫时间为T ′

2k, 布点数 (弛豫分
量个数)为m, 各弛豫分量的幅值为x0i. 采用算法
对信号 yobs进行反演得到T2谱的峰值为hk, 峰值
对应的弛豫时间为T ∗

2k, 各弛豫时间点对应的幅值
为xi,则峰值误差∆h、峰位置误差∆T2以及幅值平

均误差∆x的计算公式分别为:

∆h =
1

k

k∑
i=1

∣∣∣h0i − hi
h0i

∣∣∣× 100%, (14)

∆T2 =
1

k

k∑
i=1

∣∣∣T ′
2k − T ∗

2k

T ′
2k

∣∣∣× 100%, (15)

∆x =
1

m

m∑
i=1

∣∣∣x0i − xi
x0i

∣∣∣× 100%. (16)

4.1 光滑模型与稀疏模型反演对比

首先分别构造光滑模型和稀疏模型的T2谱,
布点数均为 36, 按指数分布在 1—104 ms, 回波间
隔 2τ = 1.2 ms, 回波数n = 1500, 通过计算得到
NMR回波曲线, 分别加入信噪比为 20 dB的高斯
白噪声, 如图 4 (a)和图 4 (b)所示. 利用非负SVD
算法和L1稀疏算法分别进行T2谱反演, 其结果如
图 4 (c)和图 4 (d)所示. 通过对比可以看出: 对于
光滑模型, 非负SVD算法和L1稀疏算法反演结果
均与仿真的T2谱基本相符, 只在较小的T2处, 由
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于 τ值较大, 两种方法的反演结果均存在偏差. 对
于稀疏模型, 通过L1稀疏算法得到的T2谱比非负

SVD算法更接近仿真模型. 这是因为非负SVD算

法假设T2谱是连续分布的, 对于稀疏模型的反演
结果过于光滑. 因此L1稀疏算法既适用于光滑模
型, 也同样适合应用于稀疏模型.
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图 4 (网刊彩色) 光滑模型与稀疏模型下反演结果对比 (a) 光滑模型NMR回波曲线; (b)稀疏模型NMR回波曲线;
(c) 光滑模型 T2谱; (d)稀疏模型 T2 谱

Fig. 4. (color online) Comparison of the inversion results between the smooth and sparse models: (a) NMR echo
curve of the smooth model; (b) NMR echo curve of the sparse model; (c) T2 spectrum of the smooth model; (d) T2

spectrum of the sparse model.
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图 5 (网刊彩色) T2峰值数变化模型的反演结果对比 (a)单峰值 T2谱; (b)双峰值 T2谱; (c)三峰值 T2谱; (d)四
峰值 T2谱

Fig. 5. (color online) Comparison of inversion results of the multimodal model with different peak numbers:
(a) Single-peak T2 spectrum; (b) two-peak T2 spectrum; (c) three-peak T2 spectrum; (d) four-peak T2

spectrum.
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4.2 T2峰值数变化的反演对比

为了验证两种方法对不同T2峰值数的反演效

果, 模拟了T2谱峰值数从单峰值变化到四峰值的

四个稀疏模型, 如图 5中黑色星线所示, 并分别使
用非负SVD算法和L1稀疏算法进行反演, 反演结
果如图 5中蓝色线和红色线所示.

从图 5中可以看出, L1稀疏算法在处理不同
T2峰值数的稀疏模型时, 其反演得到的T2谱都更

接近于仿真模型, T2谱的峰值与仿真模型存在较
小的误差, 对应的T2值与仿真模型基本相等. 在
图 5 (d)中, 使用L1稀疏算法得到的T2谱四个峰的

幅值平均误差∆x仅为 8.6%, T2位置与仿真模型
相等. 而采用非负SVD算法反演的T2谱均为光滑

的, 且T2谱的峰值误差∆h和峰位置误差∆T2较

大. 尤其是四峰值T2谱, 非负SVD算法得到的T2

谱的幅值平均误差∆x和峰位置误差∆T2分别为

65.7%和 19.93 ms, 不能反映各峰的峰值大小和位
置, 而且第四个T2峰已经不明显. 因此, 可以得出
L1稀疏算法反演结果T2峰值及幅度均明显优于非

负SVD算法.

4.3 不同信噪比的反演结果

为了验证L1稀疏算法在不同信噪比 (SNR)下
的反演效果, 在稀疏模型的T2谱计算的NMR回波
曲线中, 分别加入信噪比为 50, 30, 20, 15, 10及
5 dB的高斯白噪声, 依次对不同信噪比下的NMR
回波曲线利用L1稀疏算法进行反演. 为了验证不
同噪声数据的统计结果, 在不同SNR下随机产生
100组噪声数据, 将非负SVD算法和L1稀疏算法
的反演结果分别描绘在图 6中, 颜色较深的区域代
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Fig. 6. (color online) Comparison of the inversion results T2 spectrum with different SNRs.
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表 1 信噪比不同时的 T2谱反演结果误差

Table 1. Error analysis of the inversion results of T2 spectrum with different SNRs.

SNR 50 dB 30 dB 20 dB 15 dB 10 dB 5 dB

峰值误差

∆h/%
非负 SVD 4010 4002 4016 4059 4182 4209

L1稀疏 337 613 1045 1752 3105 3814

峰位置误差

∆T2/%
非负 SVD 2318 2336 2344 2319 2423 2485

L1稀疏 0.00 0.00 238 882 1250 2344

幅值平均误差

∆x/%
非负 SVD 2660 2672 2698 2763 3045 3476

L1稀疏 0.62 174 428 769 1942 3063

表反演结果出现的机率较大, 颜色较浅的区域代表
出现的机率较小, 黑色曲线代表构造的T2谱. 统计
100次反演结果的T2谱平均误差见表 1 .

通过对比图 6中各SNR下的T2谱反演结果和

仿真模型, 可以得到: 在信噪比较高时L1稀疏算
法得到的T2谱更接近于仿真模型, 非负SVD算法
反演T2谱则一直保持光滑; 随着SNR降低, 噪声
对反演结果的影响逐渐增大, L1稀疏算法结果出
现的范围逐渐变大, 当SNR小于 15 dB时, L1稀疏
算法得到的T2 谱趋于光滑, 与非负SVD算法反
演结果类似. 从表 1中可以看出, 当SNR = 20 dB
时, L1稀疏算法反演T2谱的幅值平均误差∆x为

10.45%, 而非负SVD算法结果的平均误差∆x为

40.16%. SNR越大, 峰值误差∆h、峰位置误差∆T2

以及幅值平均误差∆x越小, 即L1稀疏算法反演
T2谱越准确. 在实际应用中应该考虑采取有效预
处理手段将信噪比提高至 20 dB以上, 以确保反演
精度. 然而非负SVD算法反演T2谱的各项误差始

终较大, 当SNR = 50 dB 时, T2谱的幅值平均误差
∆x也高达 40.10%, 可见即使在很小的噪声下, 非
负SVD算法也不能准确地反演稀疏模型的T2谱.

5 实验反演实例

为了验证L1范数稀疏反演方法在实际应用中
的反演效果, 通过煎炸红薯制作出煎炸油样品, 使
用低场核磁共振分析仪器测量, 得到各组煎炸油样
品的NMR回波曲线, 并运用两种反演方法分别对
NMR回波曲线进行反演.

5.1 煎炸油低场核磁共振实验机理

低场核磁共振技术可以用来检测煎炸油品质,
其原理是通过低场核磁共振仪获得煎炸油样品

的NMR回波曲线 yobs(t), 再反演得到煎炸油的T2

谱. 若将煎炸油样品视为某单一组分构成的整体,
其弛豫时间为T2w, 对应的幅值为x∗, 则 yobs(t)可

表示为

yobs(t) = x∗ e−
t

T2w , (17)

通过反演,可得到样品的单组分弛豫时间T2w (ms).
正常油脂由甘油三酯组成, 可分为饱和脂肪酸

和不饱和脂肪酸, 二者的H质子所处的结构不同,
不饱和脂肪酸的弛豫时间较长, 因此可认为正常油
脂的T2谱中第一个峰代表饱和脂肪酸, 第二个峰
代表不饱和脂肪酸. 而经过高温精炼、煎炸等高温
氧化的油脂, 会产生一系列极性增大、聚合度较高
的氧化产物, 其弛豫时间较短, 即在前两个峰前出
现第三个特征峰. 因此, 反演得到的T2谱具有三个

谱峰, 分别称为T21峰、T22峰和T23峰
[6], 其中T21

峰的峰面积占总面积的比例S21和T2谱的单组分

弛豫时间T2w, 与大豆油的酸价、黏度、吸光度和极
性组分含量等检测指标之间存在良好的相关性, 说
明利用低场核磁共振检测的S21和T2w, 可以有效
反映煎炸油的品质情况 [21].

5.2 不同煎炸油品质的T2谱反演实验

首先制作煎炸油. 用金龙鱼大豆油煎炸新鲜红
薯片, 在煎炸炉中倒入 3 L大豆油, 并将油温控制
在 190—200 ◦C范围内, 每次放 100 g新鲜红薯片
于煎炸炉中, 5 min后将煎炸好的红薯片捞出, 并重
新放入新鲜红薯片. 每 4 h 对大豆油取样一次, 共
煎炸24 h,取样7次,再从各样品中分别取出10 mL
煎炸油, 根据煎炸时间分为7组 (0, 4, 8, 12, 16, 20,
24 h).

通过NMI20台式核磁共振成像分析仪 (磁场
强度为 (0.5 ± 0.08) T, 仪器主频率为 21.3 MHz),
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分别对 7组实验样品施加硬脉冲CPMG序列, 其
中90◦脉冲宽度为 19 µs, 重复采样等待时间TR为

1500 ms, 半回波时间 τ为300 µs, 回波个数根据弛
豫过程长度不同设定为 1000—4000个. 通过循环
180◦脉冲, 产生多个回波信号, 测量得到NMR回
波曲线如图 7所示. 从图 7中可以看出, 大豆油煎
炸的时间越长, 得到的NMR回波曲线衰减的速度
越快.
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图 7 (网刊彩色) 煎炸油样品测量得到的NMR回波曲线
Fig. 7. (color online) NMR echo curves from the LF-
NMR measurements of frying oil samples.

从煎炸油低场核磁共振实验中, 得到 7组样品
的NMR回波曲线, 分别对其使用非负SVD算法和
L1稀疏算法进行反演, 反演得到的T2谱如图 8 . 对
比图 8中的两组反演结果发现,通过L1稀疏算法反
演的T2谱明显存在三个峰值, 分别对应煎炸油的
T21峰、T22峰和T23峰. 而通过非负SVD算法得到
的T2谱均只有两个峰值, 说明反演结果过于光滑,
不能有效区分煎炸油的三个峰值.

同时, L1稀疏算法反演得到的T21峰的峰面

积占总面积的比例S21随煎炸时间呈线性增长,
单组分弛豫时间T2w随煎炸时间呈线性减小, 如
图 9所示. L1稀疏算法结果经过线性拟合得到:
yS21 = 0.49x+ 3.11和 yT2w = −1.23x+ 107.76, 拟
合系数R2分别为 0.994和 0.995, 该数值代表模型
对数据的拟合程度较好. 因此, 根据S21和T2w与

大豆油的酸价、黏度、吸光度和极性组分含量

等检测指标之间的相关性, 可以有效地检测出煎
炸油的品质变化 [6]. 而通过非负SVD算法得到
的T2谱中, 煎炸时间与S21和T2w的线性关系为

yS21
= 0.42x+ 3.65和 yT2w

= −6.01x+ 176.81, 拟

合系数R2分别为 0.971和 0.965, 说明非负SVD算
法对于煎炸油NMR回波曲线的反演结果劣于L1
稀疏算法.
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图 8 (网刊彩色) 煎炸油样品的 T2谱反演结果对比

(a) 非负 SVD 算法; (b) L1稀疏算法
Fig. 8. (color online) Comparison of T2 spectrum in-
version results for frying oil samples: (a) Non-negative
SVD algorithm; (b) L1-sparse algorithm.

5.3 不同信噪比的T2谱反演实验

为了验证L1稀疏反演方法在低信噪比数据中
的优势, 利用煎炸时间为 4 h的油样, 分别取 10, 5,
2, 1和 0.5 mL的样品, 获得不同信噪比的煎炸油
低场核磁共振实验数据, 其他实验参数设置与 5.2
小节中保持一致. 图 10给出了对应不同样品量的
NMR回波曲线, 为了对比分析其信噪比, 将小样品
量的NMR回波曲线等比例放大至与10 mL样品量
相当的量级. 由图 10可以得到, 随着样品量的减
小, NMR回波曲线的信噪比逐渐降低, 当样品量
为0.5 mL时, 经计算信噪比为17 dB (小于20 dB),
NMR回波曲线受噪声影响严重失真. 分析原因是
低场核磁共振仪器每次测量的噪声水平不变, 随样
品量减少, NMR回波信号的幅度随之减小, 因此信
噪比降低.
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图 9 (网刊彩色) 煎炸时间与 (a)峰面积比 S21和 (b)单组分弛豫时间 T2w的相关性

Fig. 9. (color online) The correlation between the frying time and (a) the peak area ratio S21, as well as (b)
the single relaxation time T2w.
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图 10 (网刊彩色) 不同样品量下测得的NMR回波曲线
Fig. 10. (color online) NMR echo curves from LF-
NMR measurements of the frying oil samples in differ-
ent volumes.

利用图 10中的NMR回波曲线, 分别使用非负
SVD算法和L1稀疏算法进行反演计算, 得到的T2

谱如图 11 . 当样品量较大时 (10, 5和 2 mL), 即
SNR较高时, L1稀疏算法的T2谱反演结果能够

有效区分油样的三个峰值; 但是随着样品量减小
(1 mL和0.5 mL), T2谱反演结果逐渐趋于光滑, 尤
其是当样品量为0.5 mL时 (信噪比小于20 dB), T2
谱反演结果只有两个峰, 且峰位置出现较大的偏
差. 相比之下, 通过非负SVD算法得到的T2谱反

演结果均是光滑的, 无法有效区分油样的三个峰.
因此, 通过不同样品量的NMR回波曲线反演结果
可以证明, L1稀疏算法在SNR较低时, 反演结果均
优于非负SVD算法, 体现了L1稀疏算法的抗干扰
能力和稳健性. 但是, 当SNR小于 20 dB时, 两种

算法的结果均呈现光滑特性, 且无法反映煎炸油真
实的T2谱, 进一步验证仿真结论的正确性.
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图 11 (网刊彩色) 不同信噪比煎炸油样品的 T2谱反演结果

对比 (a) 非负 SVD算法; (b) L1稀疏算法
Fig. 11. (color online) Comparison of inversion results of
T2 spectrum for the frying oil samples in different SNRs:
(a) Non-negative SVD algorithm; (b) L1-sparse algorithm.
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6 结 论

针对常规的非负奇异值分解算法无法准确反

演稀疏模型的T2谱的问题, 本文提出了基于L1范
数最小化约束的T2谱稀疏反演算法, 建立NMR回
波曲线的稀疏模型表达式, 利用截断牛顿内点法求
解L1范数最小化问题, 实现了稀疏模型下T2谱的

高分辨精确反演.
通过模型仿真及低场核磁共振实测数据反演,

得到如下结论.
1)光滑模型和稀疏模型的仿真对比实验表明,

L1稀疏算法与SVD算法相比, 既适用于光滑模型,
同时适用于稀疏模型, 且具有更高的反演精度.

2)当稀疏模型的T2峰值数由单峰值变化到四

峰值时, L1稀疏算法仍能得到准确的反演结果, 而
SVD算法结果逐渐恶化, 甚至不能确定峰值个数.

3)稀疏模型下, 当测量NMR曲线的信噪比从
5—50 dB逐渐变化时, L1稀疏算法在 20 dB以上
时可以获得精确的反演结果, 峰值误差∆h在 10%
范围以内, 峰位置误差∆T2和幅度平均误差∆x在

5%范围之内, 而SVD算法的反演结果在各信噪比
下都无法得到精确结果.

4) 7组不同煎炸油品质样品的实测数据反演
结果表明, L1稀疏算法的结果优于非负SVD算法,
获得的T2谱明显呈现出三个峰值, 且T21峰面积比

S21和单组分弛豫时间T2w随煎炸时间呈线性变化

的程度较高, 再根据S21和T2w与煎炸油的酸价、黏

度和吸光度等参数的关系, 可以有效检测煎炸油随
时间变化的品质情况. 不同信噪比下T2谱的反演

结果表明, 当信噪比降低时, L1稀疏算法的T2谱反

演结果在SNR大于 20 dB的条件下仍然优于非负
SVD算法.

L1稀疏算法中将求取L0范数弱化为L1范数,
简化了计算过程, 但是结果仍然不够稀疏. 后续可
以考虑将L1稀疏算法和非线性拟合相结合进行联
合反演, 或直接进行L0范数稀疏算法研究, 以期获
得高分辨率甚至超分辨率的T2谱, 对于LF-NMR
应用于食品安全领域具有更深远的意义. 本文的研
究不仅可用于油品品质、鲜乳水分和地沟油辨识等

食品快速检测领域, 还可以推广应用到核磁测井解
释、石油储层的岩心分析、复杂油气藏流体识别等

地球物理勘探和石油化工等方面.
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Abstract

The technology of low-field nuclear magnetic resonance (LF-NMR) is commonly used in food, agriculture, energy
and chemical sectors due to its non-destructive, non-invasive, in situ, green and other advantages. Recently, this tech-
nology played an increasingly large role in the field of food-safety supervision especially. In oil product quality testing,
conventional T2 spectrum inversion methods such as the non-negative singular value decomposition (SVD) algorithm
can only reflect T2 spectrum in a smooth model. However, for a sparse model, the inversion result of non-negative SVD
algorithm is expected to be very glossy, leading to low resolution of T2 spectrum and inaccurate analysis of sample
property. To solve this problem, we propose a sparse T2 spectrum inversion algorithm based on the L1 norm mini-
mization constraint. In this paper, we establish the sparse model expression of NMR echo curve, and obtain the T2

sparse spectrum inversion results based on the inner truncated Newton-point method. Furthermore, the effectiveness of
L1 sparse inversion algorithm is examined by the synthetic data of the smooth model and the spare model which have
different peak numbers and signaltonoise ratios (SNRs). Synthetic results show that compared with the non-negative
SVD algorithm, the L1 sparse algorithm is appropriate for both the smooth model and the sparse model with higher
inversion accuracy. When the number of T2 peaks in a sparse model changes from a single peak to a quad peak, the L1
sparse algorithm can still obtain accurate inversion results, while the SVD algorithm results in a gradual deterioration,
and cannot even determine the peak number. Under the sparse model, when the SNR of the measured NMR curve is
gradually changed from 5 dB to 50 dB, the L1 sparse algorithm at 20 dB or more can obtain accurate inversion results
which have less than 10% peak error and less than 5% peak position error and amplitude average error. However, the
non-negative SVD algorithm cannot obtain accurate results at each SNR. Finally, multiple sets of frying oil samples are
utilized to prove the accuracy and robustness of L1 sparse inversion algorithm. Inversion results of seven sets of frying oil
samples show that the L1 sparse algorithm prefers the non-negative SVD algorithm. The obtained T2 spectrum by the
L1 sparse algorithm shows three peaks obviously, and the T21 peak area ratio S21 and the single component relaxation
time T2w are higher linear with respect to frying time than the results by non-negative SVD algorithm, which is useful
for detecting the frying oil quality change. The inversion results of the T2 spectrum at different SNRs are consistent
with the synthetic results, i.e., when the SNR is reduced, the T2 spectrum inversion results from the L1 sparse algorithm
are better than those from the non-negative SVD algorithm when SNR is greater than 20 dB.

Keywords: lowfield nuclear magnetic resonance, T2 spectrum inversion, sparse representation, L1-norm
minimization constraint
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