Chinese Physical Society
M!l H Acta Physica Sinica __

. Institute of Physics, CAS

HLEEEE RGN = LB B FRBI g SR ST e 3R
2R TEF APR ETHERE Wb X ER

Spectral radiant characteristic of airborne optoelectronic system detecting aerial maneuver target
Kou Tian Yu Lei Zhou Zhong-Liang Wang Hai-Yan Ruan Cheng-Wei Liu Hong-Qiang
5| 1% & Citation: Acta Physica Sinica, 66, 049501 (2017) DOI: 10.7498/aps.66.049501

1E26 1713 View online: http://dx.doi.org/10.7498/aps.66.049501
AP 4R View table of contents: http://wulixb.iphy.ac.cn/CN/Y2017/V66/14

‘fﬁ'{_]' el /\@E']Eﬂﬂjlﬂ

Articles you may be interested in

KA e o SR B rh P SR s R BRI T AT 25 ) « P 5 A A AT B g L 1 11 55

Quasi-particle calculations on electronic and optical properties of the peroxy linkage and neutral oxygen
vacancy defects in amorphous silica

PP 2242016, 65(2): 027801  http://dx.doi.org/10.7498/aps.65.027801

BRAAR TR AL KRRV 106 7 RIS 36 B 5

Experimental study of photon correlation spectroscopy for the long-range fluctuation of polarization in
ferroelectrics

YH 24,2015, 64(14): 147801  http://dx.doi.org/10.7498/aps.64.147801

ANRIRLAZ ¥ 1L 2 T8 XL [7) SR AT 7
Bidirectional reflectance of sandy land surface with different particle sizes
PP 24,2014, 63(18): 187801  http://dx.doi.org/10.7498/aps.63.187801


http://wulixb.iphy.ac.cn/CN/volumn/home.shtml
http://dx.doi.org/10.7498/aps.66.049501
http://dx.doi.org/10.7498/aps.66.049501
http://wulixb.iphy.ac.cn/CN/Y2017/V66/I4
http://wulixb.iphy.ac.cn/CN/abstract/abstract66423.shtml
http://wulixb.iphy.ac.cn/EN/abstract/abstract66423.shtml
http://wulixb.iphy.ac.cn/EN/abstract/abstract66423.shtml
http://dx.doi.org/10.7498/aps.65.027801
http://wulixb.iphy.ac.cn/CN/abstract/abstract64769.shtml
http://wulixb.iphy.ac.cn/EN/abstract/abstract64769.shtml
http://wulixb.iphy.ac.cn/EN/abstract/abstract64769.shtml
http://dx.doi.org/10.7498/aps.64.147801
http://wulixb.iphy.ac.cn/CN/abstract/abstract61110.shtml
http://wulixb.iphy.ac.cn/EN/abstract/abstract61110.shtml
http://dx.doi.org/10.7498/aps.63.187801

32 % R  Acta Phys. Sin. Vol. 66, No. 4 (2017) 049501

WL R GERM =S L3 B A
SR HERR 5T

mAT TE OHATRE ITHEZE MHHA NEE

(BFELTRERKEN IR TFESERE, Wi 710038)

(2016 4£ 10 A 1 HH; 2016 4E 11 A 6 HIKEME R )

AT SRS H ARG R A H AR ORI PR i ST 2. T il i e S 2
W, BRHL TR ST H AR SR S A R A, SR JE AR BN SRR I AR SRR 3 0 A
THOL, AL T AT AN B AR AL Fa AR 255 23 18] H briz s 5 R A H b A iR s br R 5 R0 2%
AR R B R IE e SR R R R, B AT 1 HARAS RIBLEI AR 3T el i B A5 5 (R 2 R PR AR L A SR
W2 RARW], R AS P 1 i A5 5 ) F BRI A R AR A T SR A R R s, U T E AR ALl R S O
Wi 2% 5 ) A7 Sk 25 FRRFAE RS 56 2R, SOt ok A A Ia s s T 2k i B AL 17 mTAT 1k, RIS 1 H e

RSN S X7 BB R B R O B ) 245 5 R A 2 R K 458

KA SRS, AR, 5 S4FE, 17 ks

PACS: 95.85.5z, 78.20.Bh, 78.68.+m, 78.90.+t

15 7

SR RIABE, BEH & IARS S BRI A R,
IS RGN H AR R IR B R A BT
P, ELIRUIPRS FE R AR (2 LSO LRI R 4t
fo AL PRI H 20 8, e B S B ISR IR
FEwm JUT BRI, 0 2 A TR = H
PRARIIAI B LT & 7R, 2 HARRI R A
ENASTE, HUBZLAMAN 8-S R ) H AR AN SR
ET AR TRME S, EouE T HARES. B3R
A HFR AR 25 25 1A 2 B 5% 2R A A% a5 38 DA
LRI T i NRFE S, DRI, 22 PR AR A 3 R A P Ao
FHLEOE LRI R SR I 2 T B RSS2
PR AL AR A I 23

7E H bR R 505 1, SRk L R TR
ZNAAJEER, X2 AT SR A AR LI )
Tike, B2 T HARS B R R PE AR AL, 5% [

* [EK BRI ISG (HHES: 61172083) HHITRE.
1 iB{Z1/F# . E-mail: shanxiakkt@163.com
© 2017 FEYIEF S Chinese Physical Society

DOTI: 10.7498/aps.66.049501

S DL EE LT —FoB 6 B AR 20 MR SR P S AR,
Xf B KL KA B L0 AR S R PR HEAT T RIS 20 AT
B VR SE T 25 1) S M R A R IR A ST B bR 4L
SRS T IR A, JFR I SR B 7 ik ST
T HFR BRI I LLAME AR L. (52 18T SRS
A1 A SO RS I BT, P I 2 (7 AR e o
AL E A, SR T A A H AR L AN S AR RS
AT L. X SRR AT AR S T A H AR AR S
PO, BT S S dE S T A E HARIIALAM
IR, A %8 H bR B S &SI gPRAER B
PRELAMESHE SRR RE . Tk, HARAL A
St B AR R M F AR BN FE R A, RO SE ) A
P18 [ AR, 2508 T H AR LA H A A BLROK
HUBRA H bR Z AL B G R, St 1 R A AE
725 18] H bR R M IR T v, T a5 D@ 4y
el B AR S RFIE, F 5 T 20 AN % 10 4 L
G55 AR MR, FaSE I AT
Sinda/G H1 Matlab B {7 #7145 (8] 3R 1 7644 H Ax

http: //wulizb.iphy.ac.cn

049501-1


http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn
http://dx.doi.org/10.7498/aps.66.049501
http://wulixb.iphy.ac.cn

Y118 Z R  Acta Phys. Sin.

Vol. 66, No. 4 (2017) 049501

Y ZL Mg S i AR AN ) B 2] A TR R 5 e 2 i
B H AR LLAME SE 5, 0SB 2 a) H AR R R
R AL 7 IR U

Khr b, AARZAMESE S EEE HAREE 1
e, EATEE S H AR & S SR A
K, IRZ 23 LR HN T H AR R PR R 5] 0,
SR, SR O B BEHEAT H AR D0 R 51 1) 5 3,
W SR PR T IE I AR AR AN 45 ) S ) BRR AR R
X5 HAr U2, BARAR H AR 2382 51 i 6 1
B 2 1) A R A ) 24 A T S S T R R
Mg 7 T DA, 56 4 2 T 4 AE H RS 5
g sh T A E BRI Bl HIARHERES 5 H
bris Bl 2 1A I AR AT TR LA, M 4L
HMNRFAEAR 5 4 B I AL H AR IR BT 78 SR
Rz, Rk, AN Hrilsl H ARG IEE =,
B O RIEE 5 5 H ARz s 2 18] [ e
SR AR, P H AR B S AT 2k [

2 HATG#EEA g
2.1 BirREERAERITE ST

R Jihr b, H bR ARSI HLEOL L AR
GRS S REEA E BRI, X
G SRR S T BORIE TR R T PR S DA
LRSI () — R B RS, SEBrfi ol R, H s
S5 S A 08 P A TR 23 A1 5 T SR AR A B AT
R BH AR A BARLATIA . H AR SE B R S5
DIARSG. AL H b S T8 58 o 2 18] o0 A dn B 1 B
7, B (Ozyz) Fom UL H b0 SR i) B A AR
WA, BN KA, oo H AR A

zZ

Target |reflective Sun radiation
radiation|of su
\ ‘y AT Head reflective
e
Atmosphere reflective & e g
radiation of sun / /
T
Target reflective
radiation of earth

Earth
radiation

Earth reflective
radiation of sun

Bl1 B bR S 5 =2 6 23 A7
Fig. 1. The spatial distribution of target reflecting

background radiation.

Hi T AR R AT SRS BON R 2%, 7 200
o, B 2Oy KA y O 2 M T #EAT 73 4. 42

=21 Wtion of sun Y

Oy /KFHN, HinH ST FENFEESRTESHE =
AR FH AR ST g2 . R4 B brdLi g KB & AT, B
KBHEARAA B € (0,1/2). TR 20y /KFH A
H bR S 3 8 s S o B A (8] 40 A A

Fref(a7 Iside)
Pt (AN)[Esun (N\) Aheaq sin 8] cos ¢
+Lsky<)\) . (Ahcad COS (v

+Agide| sin )]
0<a<m/2or3n/2<a<?2mn,
= (1)
Pt (A) [Esun(N\) Aheaq sin 8] cos ¢
+ Ly (A) - (Aside| sin |
+Atai| cos al)]
/2 < o < 3m/2,

A, pe(N) Ros BAR S BRI R, Equn (V) RRK
FHERST T, Lo (N) BN RE W RIBH L, o R
N xOy WA, H RS AR D R, 387 1
NIE; Anead, Aside M Avant 733878 H AR L LR
TR 000 T 552 T AR R i 5052 T A,

FE yOz AR AN, d13 H AR LT 3R S 48
SRR S o AN R, R RG A JT e, fEH
b AR, H AR ARG E R R AR
PR SR 52, 1 28 1 U 52 3 T 4 A5 A S R A3t
T ) AR R . AE H be B AR, AR ' SR AN
BV AR S AR 52 e g, VT AR R H AR T R AR AT
5 23 18] 73 A N

Fref(97 Ion)

Pe(N) [Esun (A) Aon (sin |0 — 5]
+pa(A) cos |6 — B])

+ Lgiy (A) (Anead cos 8 + Aoy, sin 0)]

= 0<0<m/2, @)

pt(N)[Eoun () Aoy sin |6 — 5|
+ Licy (A) (Aon sin 6 4+ Agair| cos 6])]

n/2 <6 <m,

A, pa(N) Rom KB R EL, Ao Fom Hir ER
T AR, 0 %78 yOz 1 A1 A, HARET Ay
AL, WSRO IE. fE H AR TR, H bR SO
GE L DS

049501-2


http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn

32 % R Acta Phys. Sin. Vol. 66, No. 4 (2017) 049501

. Tt .
pt(A) [Esun(/\)pa(/\) (Atail S111 (0 - (5 + /6)) ) + Abelowl S 9‘)
+ Loy (A) (Atait| cos 0] + 7e (A, h) Apelow Liearsh (A)] sin 9[}, <6< 3m/2,
Fref(ea Ibelow) -
Pt(A)[Esun(A) pa(A) (Abelow| sin 0] 4+ Aneaa| cos( — (21 — 3))])
+ Te(>\, h)Learth()\)Abelow sin 6 + Lsky()\)Ahead‘ CcoS 9”, 37’[/2 <0 < 2m,

K 7e(A, h) = exp[—a(X) - h]) R MRS 2 H AR R B8 2, p(N) RT3 A2 40

2.2 BIRAKIELERS=E S

H AR ARS8 S5 98 B SRR T H AR 58 2 L Rt IR A, 5% R 4R O 5 5 XS02 U 5 A0 ) A T 235 DDA O,
M HARTEA R KAE sl CATH, HARSE R TS 3 I Gom 5 805 B B, 6T sl B ARk,
AR TR NI . TR FRE T, Ssnda) e B RS % KR E S Ao E 2R, T 2R H T
R SR TH R H AR AN R IR, HERE N
Thead = To[1+7((v = 1)/2) (Vi /Vo)?], Taiae = 216.7[1 4 0.164(V; /V0)], Tian = Ta(p1/po) V7, (4)
HH, Theads Tuide T Thann 7307~ H AR S 5 AU THI 5% R A0 5 07 i B2, To 2R J B R RUBE s Vo AV, 43
FEoR S T A H AR y AR ERELL, — Ky = 1.4; r AKE R ERr =0.82, X r =087 T, N
T R e Ja W AR S (0 PR SR s pa/po RonEi R L, — M p1 /po = 0.5, HH % B o e 45 21 H brde it
H AR \
M= [ S (5)
M )5 (e'32/’\T —1)
Kfep = 3.7415 x 10710 W-m?2, ¢ = 1.4388x 1072 m-K; A\ B \o RSN IR EL. 7€ H bR 20y /KFTH A,
H bR A AE 45 5 58 5 25 0] 29 A5

M, M;
st(/\)[ };(ead Apeaq COs o + :_:deAside| sina|], 0<a<m/2or3n/2<a<?2n,

Frad (Oé, Ilevel) = (6)

Msi e : Mai
e(N) nd Asige| sina] + £,(X) ;1

e (N) M ea(N) 20375 HARSE BT RAE TR RIS, Micad, Maiae T Mian 70590375 HARU KL EE 51 5
BEAN ARG L. WAE HAR yOz EATT TP, H ARAS AL S 5 5 4 5] 40 A Ny

() |:Mhead

Mon . Mai
- Aon|sinf| + ea(A)%Ataiﬂ cosf|, m/2<a<3n/2,

Agan| cosa|, m/2 < o < 3m/2,

MOH .
Aheadcos9+nAon|sm9|], 0<60<m/20r3m/2 <0 <2m,
Frad(ey Ipitch) = (7)

ee(N)

|
A Mon 9 H bR B2 058 5 8, B Mo, = TURT DR AR fR 32 5 22 7 R iR N
Mide, Aon 9 HFREESHHE I . o .
f(@,y,t) = &), wy(t), (1), (@), (8)

3 E]ﬁT*)LZjJ 7?5%51%2 Hﬁl— }%'ﬁ HoA 2(t) = v(t)cosl(t), y(t) = v(t)sind(t),

N » 2F o AN = o 7\

3.1 BiRESHaiE SRR %g;ﬁ&(ﬁ)%«:;ﬁ HEE. HAIRES TR M
UL T L 30 549 1 A 4B, U2 S 6 £ A . -
b v, (BB H AR I 208 SR R RN ] [oroo] o
X(t) = [o(t), &), y(t), 5(0)], Ferbt, [w(t),y()] % EO| _ [0000] 1)
R ERRIE X (¢) RS MBLE, [2(t), 5(t)] 5 HARE y(t) 0001] |y(t)
X (¢) ARASHE B, — A IS 377 10 409 6, i) [0000] |50

049501-3


http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn

Y118 Z R  Acta Phys. Sin.

Vol. 66, No. 4 (2017) 049501

+
0 0

cosf(t) —sinf(t)

A, a AVIEMREE, a, AERIERE. (9) X
BN RS TR

Xir1 = Prg1/x Xk + Bro + G Wy,

0 0
sinf(t) cosf(t) [at

sinwT 1 — coswT'
w B w
0 coswl' 0 —sinwT
- 0 1 — coswT sinwT X
w w
|0 sinwT 0 coswT' |
[T'cosf(t) sinf(t) sin[f(t) + wT]
w w2 w?
cosf(t) cos[0(t) + wT)|
w w -
* cosf(t) Tsinf(t) cos[d(t)+ 0T O
w2 w2 B w?
sin[0(t) + wT| sin6(t)
L w W i
+ G Wy, (10)

A, X M X 209K RGUE kA k+ 1 I 2
RE, B NRGREHBAELE, By NHNIRES
R, W, R HARIE 0L h i IR S), Gy R
RYEFE R RS TR R, op NAINIEE. (10) AFRIL T
OB — R RG TR, ©T R B i ok
LIS AR R Y wT B R /INEEIT 0 B, 38 it %4
AR, (10) BRI Al 9 T 25 D 4 B 1) 50 33U
A (CV).

3.2 JIRESHHESH
A1) F AL RR , A T S A A H AR

WS 5 I SRR AR L, AL AR AR AR AR
PR AR5 PRI 35 A B 28 2 8] e 5% AR K, K a3 )
I BR AE A AR AR R 28 1) AR Ao B 2 40 DA R0 45 A4 A
A IAARRE. F AR MLEIRI &5 AL bR 2R 1) 25 (A £
BRAWE 2 Frox. B2 hzlss T s 2
Sk B =FHLENAT Sy, 15 A 9 H AR ELAIELS)§
17, 1600 B N HFREUK-F 90° B B HL3h AT, oL C
N HAREOKCHE eSS WAT. B to, t1, to REISTA]
B BN IRI N 221, B R O AR S R AR ) A A
RE; ¢ 27 22 8] H AR AR R PRI 3% A Fm 2R 19 7 7
M. B2 RIRXRSC RIS AR SR A
172 1] LB AR B LA 178 B i R R, 4
MCAS TRV T 1o 2RI 1 A 5 18 I 1) i 4 % B AR
SR RE, H AR RN 2 S BN R B4R S RAAE.

LUKV A RIALB 9], A LIRS AT 7 18
SR R, W H AR R LB A B R H AR A A o
o, A a) H bR GRS el KR AL, bl
AL AR A PSR 25 0P WU AR O B 2
SR N

A2
Eaccept — / [Fref(aa Iside) + Frad(aa Iside)
A1
+ op(A)]dA - 0707(A, R), (11)

X, TR ERRBEZEL F, Mr(\R) =
exp[—p(A) - R]; op(\) A SEEHMEE, 0 AES
WA T, 0 WG RGELE, (A, R) HRAE
L HAE—E N BN RS AT H AR RN ER BRI
bR 't i A S50 76 2RI 4% T R AT — S8 AR
BESLAR MG T, IX LG AR S AE RN 25 v ) B
INAERE
Eaccept - VaAoDx
(Ao AR

Vo AMER LR, D Y HRIER, Ag eBoTini,

(12)

Vg =

K2 AELBT T BRI E

Fig. 2. The diagramsof aerial target detection with different maneuveringmodes: (a) The case of tail-on

detection; (b) the case of head-on detection.
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Fig. 3. (color online) Thespectral response signal of target in uniform linear motion mode.
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Fig. 4. (color online) The spectral response signal of target in uniformly acceleratedrectilinear motion mode.
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Fig. 5. (color online) The spectral response signal of target in uniform linear motion mode.
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Fig. 6. (color online) The spectral response signal of targetin uniformly accelerated rectilinear motion mode.
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Fig. 7. (color online) The spectral response signal of target approaching airborne using S maneuvering motion mode.
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Fig. 9. (color online) The spectral response signal of target in anticlockwise circling motion mode.
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Abstract

Spectral radiation detection in deep space background is an important fundamental research in the field of infrared

target detection and identification. Based on the spectral radiation and scattering theory, the spatial distribution model
of aerial target reflecting background radiation under complex environment is first built. Then the horizontal and
pitch spectral radiation models of target are built based on target skin temperature distribution caused by aerodynamic
heating. Combining the target motion equation and relative rotation matrix between target matrix and detector matrix,
the process-oriented characteristic of spectral response signal with spatiotemporal variation is emphatically analyzed.
The simulation results indicate that different target maneuver modes cause different characteristics of spectral response
signal, which shows that a remarkable mapping relationship exists between the target maneuver mode and spectral
response signal characteristic. Thus using the spectral response signal to identify target maneuver mode provides a
feasible method, and the target posture and relative position are the main factors to affect the spectral response signal

characteristic.

Keywords: spectral radiation, target maneuver mode, signal characteristic, simulation experiment
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