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Fig. 1. (color online) Physical model MHD heat shield system for Hall effect analysis.
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Fig. 2. Calculation mesh of the electric field validation

case.
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Fig. 3. (color online) Comparison of numerical and

analytical results.
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0.35F® = — Bo=0T,
F . ---By;=03T
FoT Tt ~==By=05T
0.30 "W“v;_* = By=0 TM0
¥ 4 By=0.3 T

v By=0.5 TI20]

K5 (MTRE) =FoNnwa o T iR im A o i
£k

Fig. 5. (color online) Heat fluxes along the wall
under three different stagnation magnetic induction
strengths (Bog =0, 0.3, 0.5 T).
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Fig. 6. (color online) Heat fluxes and pressure cont
ours under different Hall parameters (Bp = 0.2 T, in-

sulating wall): (a) Heat fluxes; (b) pressure contours.
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Fig. 7. (color online) Lorentz forces under different

Hall parameters (Bo = 0.2 T, insulating wall).

Electric current lines

Y/L

05 1o 5
X/L

Electric current lines

Y/L

1 1 i |
0.5 1.0 1.5
X/L

B8 (MTIRO) AR ERZET RS ESA (Bo = 02 T, £%KH) (a) 8 =0; (b) 8 = 1.0

(c) B=5.0; (d) B =10.0

Fig. 8. (color online) Electric density contours and streamlines under different Hall parameters (Bg = 0.2 T,
insulating wall): (a) 8 =0; (b) 8 = 1.0; (c) 8 =75.0; (d) 8 = 10.0.
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9  (MALEE) NFEBMERZBTI XY FHREIEZE I RES M (Bo = 0.2 T, £44K1HW) (a) 8=0; (b)
B =1.0; (c) B =5.0; (d) 8 =10.0

Fig. 9. (color online) Lorentz forces on the XY plane under different Hall parameters (Bo = 0.2 T, insulating
wall): (a) 8 =0; (b) 8=1.0; (¢c) B=5.0; (d) 8 =10.0.
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Fig. 10. (color online) Heat fluxes and pressure contours under different Hall parameters (Byp = 0.2 T,

conductive wall): (a) Heat fluxes; (b) pressure contours.
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Fig. 11. (color online) Electric density contours and streamlines under different Hall parameters (Bo = 0.2 T, conductive

wall): (a) 8 =1.0; (b) 8 =5.0; (c) 8 =10.0.

(a)

(b)

12 (MTIRA) ARBAAER AR T B IREN M (By =02 T, FHEM) (a) 8=1.0; (b) 8=5.0; (c) 8=10.0

Fig. 12. (color online) Lorentz forces on the XY plane under different Hall parameters (Bg = 0.2 T, conductive wall):

(a) B =1.0; (b) B =5.0; (c) 8 =10.0.
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Fig. 13. (color online) Heat fluxes and pressure contours under different Hall parameters (Bg = 0.5 T,

insulating wall): (a) Heat fluxes; (b) pressure contours.
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Fig. 14. (color online) Lorentz force vectors and transitional temperature profile of the boundary layer

2000

under different Hall parameters (By = 0.5 T, insulating wall): (a) Lorentz force vectors; (b) translational

temperature profile.
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Fig. 15. (color online) Heat fluxes and pressure contours under different Hall parameters (Bg = 0.5 T,

conductive wall): (a) Heat fluxes; (b) pressure contours.
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ferent Hall parameters (Bg = 0.5 T, conductive wall).
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Abstract

There has been a resurgence in the field of magnetohydrodynamic (MHD) flow control in the past 20 years. An
increasing demand for sustained hypersonic flight and rapid access to space, along with numerous mechanical and material
advances in flight-weight MHD technologies, has aroused renewed interest in this subject area. As a novel application of
MHD flow control in the thermal protection field, MHD heat shield system has been proved to be of great intrinsic value
by lots of researchers in recent years. Although its theoretical feasibility has been validated, there are many problems
that remain to be further investigated. Among those problems, the Hall effect is a remarkable one that may affect the
effectiveness of MHD flow control. Considering the fact that it is not sufficient to evaluate the Hall effect by merely
using the chemical reaction model implemented in the nonequilibrium flow simulation to calculate the Hall parameter,
a parametric study is conducted under the assumption of simplified uniform Hall parameter. First, coupling numerical
methods are constructed and validated to solve the thermochemical nonequilibrium flow field and the electro-magnetic
field. Second, a series of numerical simulations of the MHD head shield system is conducted with different magnitudes
of Hall parameter under two magnetic induction intensities (Bo = 0.2 T, 0.5 T). Finally, the influence of Hall effect
on the performance of MHD heat shield system is analyzed. Results indicate that Hall effect is closely related to the
wall conductivity. If the vehicle surface is regarded as an insulating wall, the heat flux variation is co-determined by
varying the Lorentz forces within the boundary layer and the shock-control effect. Compared with the one neglecting
the Hall effect, the heat flux with Hall effect is slightly mitigated as the increase of Lorentz forces in the boundary layer
dominates when the stagnation magnetic induction intensity By equals 0.2 T. However, the heat flux is increased when
By equals 0.5 T, because the decrease of shock stand-off distance dominates which increases the gas temperature outside
the boundary layer. Moreover, in this case the larger the Hall parameter, the higher the heat flux will be. As for the
conductive wall, the performance of MHD heat shield system becomes worse with the increase of Hall parameter, and

while it is equal to or higher than 5.0, this system loses its effectiveness.
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