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Fig. 1. (color online) Structures of Ho molecule adsorbed on rocksalt or tube (MgO)g and (AIN);2 cages.
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Fig. 2. (color online) Normal vibrational modes of Hy adsorbed on Mg or O atoms in rocksalt (MgO)g.

I3 B R AR WA B — R BB ) RS, TR
ARSI 3 A AR AAR R AR AR 3R 3,
(5) TN H T Q; FR A ] IEALFR.

Ho "0 M 72 1% E 5, TR A4 & L5 % 2
ANARS A, i GaussView tHR BN AGE —
W), RIS EIEIRS AT N E ST, B2
Ho W B 7E 25 2 (MgO)o LA fAf IE PR B A . b
Pl 15 PR 225 ) v Ho (19 87 TR iR S 5% 00T 92 (14 7 1E
AEFRIEAT AT AA% A, IR A A DR T AR e L AL o) T
MR IE — M /NN BUE ). 7E Ha B/ AN RB AR K
Wi WY Ho BB 7 18 I R AE3R B0 F T, R,

52 B FARRSDF, SRR FT, &R,

AR B R I FT, 2Ror; Hy Lz 77 300 72 B
By B, 5 FT, MR ARSI RI Y Hy A

AR BN wem, 17 AL 77 2% B LE BE B 7 _E
wa-n 5 FTy XN 538 PIAN AR ZDAH 24 T Ho 1)
¥5), 5 FRy M1 FR,, £,

RLIFIH T B L&A Hy (RS, B
AlEF EMFT, 4b, HALFT, 5 FT, R340 %
H#AE 100 cm ™t LR, R BRI AR ECF. FT,
{1 41 ) A3 2 A0 B 5 B AH DG, Ho "R RH7EBH 55+ I
i FT, 2128300 em—!, 7E B 857 L0 4 100 cm ™!
%, Ho WP AERH B LB FRy AT FR,, X B R4 2
SR, TAERD B 1 AN SR L i s,
HHF B3 20 1) B &S T IR wyn A
4533.23 cm™t, BT W J5 Ha WE’J%%HEQ, M
F 1 E Y wpg 21K 100 cm—

F1 RS Ho IRSIIE (A8 cm 1)

Table 1. Vibration frequencies of absorbed Ha (units: cm’l).

FT, FTy FT, FRy FRy WH-H
Ho-Mgyc 62.18 77.95 277.27 375.95 715.56 4434.09
H2-O4c 47.21 57.00 157.09 413.18 459.91 447291
Ha-Mgs. 50.67 74.38 336.48 202.65 745.95 4441.20
H2-O3¢ 37.16 38.66 194.38 532.77 534.56 4435.16
Ho-Al 80.11 185.09 321.78 240.69 794.29 4379.93
Ho-N 15.98 18.73 125.57 349.73 352.32 4491.15
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IR % 8T MBEIIBIE 120 R 25T (2)
E LR RE AR F R IEAZPE UL
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Table 2. Adsorption energy and zero-point energy cor-

rection of Ha (units: eV).

AE AZPE ) hwi/2 (hAwau/2) By
Ha-Mgse —0.089 0.086 0.087 (—0.006) —0.003
Hs-O4. —0.055 0.066 0.067 (—0.004) 0.011
H>-Mgse —0.128 0.082 0.082 (—0.006) —0.046
H2-O3. —0.071 0.077 0.077 (—0.006) 0.006
Hs-Al  —0.103 0.091 0.091 (—0.010) —0.012
Ho-N  —0.033 0.051 0.051 (—0.003) 0.018
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Table 3. The entropy of adsorbed Ha at T' = 298.15 K
(units: J/mol-K).

H2-Mgye H2-O4c H2-Mgse H2-Ozc Ha-Al Ho-N

Sads  46.96 57.56 51.96 58.89  39.64 80.25

AS 47.66 57.79 52.00 58.96  39.42 80.29

60

40

Sads/J-mol LK1

1 1 1 1 1 1
0 50 100 150 200 250 300 350

T/K
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Fig. 3. (color online) The entropy of adsorbed Ha at

different temperature.
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Fig. 4. (color online) Rotational and total entropy of
gas-phase Ha.
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Fig. 5. (color online) The correlation between entropy
of adsorbed H2 and entropy of gas-phase at P = 1 bar,
T = 70-350 K.
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Abstract

The entropy and enthalpy changes upon absorption determine the equilibrium adsorption states, the adsorp-
tion/desorption kinetics, and the surface reaction rates. However, it is difficult to measure experimentally or calculate
theoretically the entropy of adsorption state. Hydrogen is considered as the most promising candidate to solve the
global energy problems, and the storage by adsorption on light porous solids constitutes a main avenue to research field.
An ideal storage system should be able to operate under ambient conditions with high recycling capacity and suitable
uptake-release kinetics. The entropy of adsorbed H2 molecules is of great significance for determining the optimum
conditions for hydrogen storage and for designing the storage materials. To the best of our knowledge, however, the only
report on the entropy of the adsorbed Ha> molecules is that adsorbed on alkali-metal exchanged zeolites at temperatures
around 100 K. Due to different assumptions of the entropy changes, the values of the optimum enthalpy AH reported
in the publications cover a wide range. In this paper, the adsorption states, vibrational modes, and the entropies of Ho
molecules adsorbed on (MgO)s and (AIN)i2 clusters are studied by using first principal method. The computation is
performed by the second-order perturbation theory (MP2) with the triple zeta basis set including polarization functions
6-311G(d, p). The very-tight convergence criterion is used to obtain reliable vibration frequencies. Analysis shows that
six vibrational modes of the adsorption complexes can be attributed to the vibration of Hy molecule. For these normal
modes, the amplitudes of the displacements of cluster atoms are usually two orders smaller than those of the hydrogen
atoms. As the vibrational frequency is inversely proportional to the square root of the mass, the zero-point energy has
an important influence on the adsorption energy. The ZPE correction exceeds half of the adsorption energy, and the
adsorption on the anions is not stable after including the correction. Under the harmonic approximation, the normal
vibration modes are independent, so the entropy of adsorbed Hz molecules can be calculated by using the vibrational
partition function based on the vibrational frequencies. The results indicate that the entropy values depend mainly on
the two lowest in-phase vibrational frequencies and it is not directly related to the adsorption strength but determined
by the shape of the potential energy surface. In a temperature range of 70-350 K and at a pressure of 0.1 MPa, there is
a good linear correlation between the entropy of adsorbed Hs and the entropy of gas-phase. The entropy of Hs decreases

about 10.2R after adsorption.
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