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Fig. 1. The center-of-mass coordinate system used to

describe the k, k' and j’ correlations.
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Fig. 2. Reaction probability of the H + CHT —
C*t + Hs reaction at different vibrational state (v = 0,
1,3, 5).
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CH*t — C* +Hj reaction at different vibrational state
(v=0,1, 3, 5).
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Fig. 4. (color online) Angular distribution of P(6;) the
H+ CHt — Ct 4 Hj reaction at different vibrational
state (v =0, 1, 3, 5).
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Fig. 5. (color online) Angular distribution of P(¢p;) the
H+ CHt — Ct 4 Hy reaction at different vibrational
state (v =0, 1, 3, 5).
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Fig. 6. (color online) Spatial distribution of P(6;, ;) of the H+ CHt — C* 4 Hj reaction at different vibrational state:
(a)v=20; (b)yv=1; (c) v=3; (d) v=>5.
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Fig. 7. (color online) Four polarization dependent differential cross-sections of the H+CH* — Ct +Ha reaction at different
vibrational state: (a) (2n/o)(dooo/dwt); (b) (2n/0)(do20/dwt); (¢) (21/o)(do2i—/dwt); (d) (2r/0)(do22+/dwt).
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Abstract

The effect of reagent vibrational excitation on the stereodynamical properties of H(*S)+ CHT(X'St) —
ct (2P) + Hg(XlEg) reaction is investigated by quasi-classical trajectory method on a globally smooth ab initio po-
tential surface of the 2A’ state at a collision energy of 500 meV. The reaction probability and the reaction cross-section
are also studied. In the calculation, the vibrational levels of the reactant molecules are taken as v =0, 1, 3, 5 and 7 =0,
respectively, where v is the vibrational quantum number and j is the rotational quantum number. The calculation results
show that the reaction probability reaches a maximum when v = 1, and then decreases with the vibrational quantum
number increasing. The integral cross-section decreases sharply with the increase of vibrational quantum number. The
potential distribution P(6:), the dihedral angle distribution P(¢y), and the polarization-dependent generalized differen-
tial cross sections are calculated. P(6.) represents the relation between the reagent relative velocity k and the product
rotational angular momentum j’. P(p,) describes the correlation of k-k’-j’, in which k’ is the product reagent relative
velocity. The peak of P(6;) is at 6: = 90° and symmetric with respect to 90°, which shows that the product rotational
angular momentum vector is strongly aligned along the direction perpendicular to the relative velocity direction. The
peak of P(0:) distribution becomes increasingly obvious with the increase of the rotational quantum number. The di-
hedral angle distribution P(¢,) tends to be asymmetric with respect to the k-k’ scattering plane (or about ¢, = 180°),
directly reflecting the strong polarization of the product angular momentum for the title reaction. Each curve has two
evident peaks at about ¢, = 90° and ¢, = 270°, but the two peak intensities are obviously different, which suggests that
7’ is not only aligned, but also strongly orientated along the Y-axis of the center-of-mass frame. The peak at o, = 90°
is apparently stronger than that at ¢, = 270°, which indicates that j’ tends to be oriented along the positive direction
of Y-axis. In order to validate more information, we also plot the angular momentum polarization in the forms of polar
plots 6 and ¢,. The distribution of P(6:,p:) is well consistent with the distribution P(6;) and also the distribution
P(pr) of the products at different vibrational quantum states. In addition, the polarization-dependent differential cross
section is quite sensitive to the reagent vibrational excitation. Based on the obtained results, we find that the observed

excess of the methylidyne cation CHT is closely related to the reactant of vibrational excitation in interstellar chemistry.
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