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反应物分子初始振动激发对

H + CH+ → C+ + H2
反应的影响∗

唐晓平1) 和小虎2)† 周灿华3) 杨阳1)

1)(中国科学院大连化学物理研究所, 分子反应动力学国家重点实验室, 大连 116023)

2)(太原科技大学应用科学学院物理系, 太原 030024)

3)(中国科学院大连化学物理研究所, 中国科学院化学激光重点实验室, 大连 116023)

( 2017年 3月 2日收到; 2017年 4月 14日收到修改稿 )

在CH+
2 体系的电子基态势能面上运用准经典轨线方法, 研究了当碰撞能E = 500 meV时, 反应物分子

的振动激发对H(2S) + CH+(X1Σ+) → C+(2P) + H2(X1Σ+
g )反应的反应概率、反应截面和立体动力学性质

的影响. 分别计算了两矢量相关k-j′的P (θr)分布, 三矢量相关k-k′-j′的P (φr)分布以及反应产物的四个

极化微分截面. 结果表明, 产物分子转动角动量不仅在Y 轴方向有取向效应, 还定于Y 轴的正方向. 并且发
现, 随着振动量子数的增加, 对反应体系产物分布的影响就越明显.

关键词: 立体动力学, 准经典轨线方法, 矢量相关
PACS: 34.50.Lf, 31.15.xv, 87.15.H– DOI: 10.7498/aps.66.123401

1 引 言

H原子 [1]与CH+碰撞时发生的抽取反应在

天体物理中占有很重要的地位, 反应的产物为
C+和H2. 而在该反应式 H + CH+ → C+ + H2

中, 生成产物之前需先形成短寿命的中间络合物
CH+

2 , 再由CH+
2 快速分离成C+和H2. 自 1941年

CH+被首次识别以来 [2], 因其含量过于丰富一直
备受关注. 多年来, 有关CH+

2 体系的研究颇受重

视 [2−11]. 例如: 1986年Ervin 和Armentrout [10]报

道了C+ + H2(D2,HD) → H(D) + CH+(CD+) 反

应的反应截面以及动力学同位素效应, 主要介绍了
从阈值到 15 eV的碰撞区间, 反应截面在给定的范
围内会快速增长, 并且在高能区时, 还出现了同位
素效应, 但该效应由于振动零点能的影响呈现出

了不同的结果. 在实验方面, Plasil等 [11]报道了低

温条件下CH+ 与H原子在碰撞反应中, 当温度为
60 K时速率常数达到一个最大值, 而在低于该温度
时, 实验值与计算的结果正好相反. 最近, Werfelli
等 [4]基于新的势能面, 运用非含时量子散射法研
究了低温条件下H + CH+ → C+ + H2反应的速率

常数. 结果表明, 温度在 50—800 K的范围内理论
值与实验结果符合得很好, 而当温度低于 50 K时
理论值远远大于实验值. Han等 [12−15]运用成熟的

准经典轨线法, 在吸引、混合、排斥势能面上研究
了产物双分子反应的转动极化. 为了获得一个完
整的理论动态反应, 不仅要研究它的标量性质, 也
要重视它的矢量性质 [16]. 最近, 我们小组在研究
碰撞能对CH+

2 体系的立体动力学性质的影响中发

现 [17], 该反应的两矢量、三矢量分布在低能区时
随碰撞能的增加而减弱, 但在高能区时随碰撞能

∗ 国家自然科学基金 (批准号: 21403226, 21503226)资助的课题.
† 通信作者. E-mail: huzi233@126.com
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的增大该类分布却明显增强. 由此可见, 碰撞能对
CH+

2 体系的影响很明显. 迄今为止, 尚未见有关反
应物在不同的振动量子数下对CH+

2 体系的立体动

力学性质的影响的研究. 所以, 本文工作主要是基
于最新的势能面 [18]运用准经典轨线法 [19]来计算

H + CH+ → C+ + H2 反应.

2 准经典轨线的方法理论

2.1 坐标系的建立

计算中采取质心坐标系来描述反应物的相对

速度k和产物相对速度k′以及产物转动角动量 j′

的分布, 如图 1所示. 坐标系的Z轴正方向平行于

反应物相对速度矢量k的方向, Y 轴垂直于含有

反应物相对速度矢量k和产物相对速度矢量k′的

X-Z平面, 该平面也被称为散射平面. k和k′的夹

角 θt为散射角, 分别用 θr和φr来表示产物转动角

动量 j′的极角和方位角.

X

O

ϕr

θr
θt

Y

Zk

kϕ
jϕ

图 1 描述k, k′和 j′分布的质心坐标系

Fig. 1. The center-of-mass coordinate system used to
describe the k, k′ and j′ correlations.

2.2 产物分子角动量的转动极化

为了对动力学信息更加直观地描述, 我们计
算了两矢量相关和三矢量相关的分布函数. 通常
产物分子k-j′两矢量相关的分布函数P (θr)可以用

Legendre多项式 [20−22]展开:

P (θr) =
1

2

∑
k

(2k + 1)α
(k)
0 Pk(cos θr), (1)

a
(k)
0 =

∫ π
0

P (θr)Pk(cos θr) sin θr dθr

= ⟨Pk(cos θr)⟩. (2)

a
(k)
0 称为定向系数 (奇数)或者称为取向系数 (偶
数), 尖括号表示求平均值.

描述k, k′和 j′三矢量相关二面角分布函数可

以用P (φr)函数来表征, 该函数可以用Fourier级
数展开 [23−25], 即

P (φr) =
1

2π

(
1 +

∑
even,n>2

an cosnφr

+
∑

odd,n>1

bn sinnφr

)
, (3)

其中, αn和 bn分别为

αn = 2⟨cosnφr⟩, (4)

bn = 2⟨sinnφr⟩. (5)

在计算过程中, 为保证P (φr)收敛则取n = 24
即可.

定义产物转动角动量 j′的空间分布函数

P (θr, φr)可以表示为

P (θr, φr)

=
1

4π

∑
k

∑
q>0

×(akq± cos qφr − akq∓ i sin qφr)

× Ckq(θr, 0), (6)

其中, Ckq(θr, φr)是修正的球谐函数,

αk
q± = 2⟨Ck|q|(θr, 0) cos qφr⟩ (k为偶数), (7)

αk
q∓ = 2i⟨Ck|q|(θr, 0) sin qφr⟩ (k为奇数). (8)

计算过程中P (θr, φr)展开到k = 7便呈现出良好的

收敛结果.
联系k, k′和 j′三矢量角分布函数可以写为

P (ωt, ωr) =
∑
kq

[k]

4π

1

σ

dδkq
dωt

Ckq(θr, φr)
∗, (9)

其中, [k] = 2k + 1;ωt = θt, φt;ωr = θr, φr; σ表示

积分截面; Ckq(θr, φr)是修正的球谐函数; 1

σ

dσkq

dωt

是广义极化微分反应截面. 1

σ

dσkq

dωt
满足下面的关

系式:
1

σ

dσkq

dωt
= 0 (k是奇数), (10)

1

σ

dσkq+

dωt
=

1

σ

dσkq

dωt
+

1

σ

dσk−q

dωt
= 0

(k, q奇偶性相同), (11)
1

σ

dσkq−

dωt
=

1

σ

dσkq

dωt
− 1

σ

dσk−q

dωt
= 0

(k, q 奇偶性不同). (12)

在很多光诱导的双分子反应实验中, 人们只对
k = 0和 k = 2的极化微分截面感兴趣, 因此
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只计算了 (2π/σ)(dσ00/dωt), (2π/σ)(dσ20/dωt),
(2π/σ)(dσ22+/dωt), (2π/σ)(dσ22−/dωt)四个极

化微分反应截面. 为了保证收敛, 在计算中极化
微分反应截面展开到k = 7.

2.3 势能面

采用准经典轨线法并基于最新的 [18]势

能面, 研究了反应物分子的振动量子数对
H(2S) + CH+(X1Σ+) → C+(2P) + H2(X1Σ+

g ) 反

应的立体动力学性质的影响. 该反应放热量为
0.496 eV(能量单位), 且势阱深度超过 4 eV. 实验
值 [25]显示H2的解离能为 4.751 eV, CH+的解离

能 [2]为4.255 eV, 而在Li等 [18]研究的势能面上H2

和CH+的解离能分别为 4.748 eV, 4.255 eV. 很容
易看出, Li等 [18]研究的势能面与实验结果非常接

近, 从而得出该势能面的精确度很高.

2.4 准经典轨线计算

在最新的势能面 [18]上, 采用准经典轨线方法
进行计算. 计算时, 将反应物分子振动量子数分别
取为 v = 0, 1, 3, 5; 转动量子数取为 j = 0, 碰撞能
为E = 500 meV, 积分步长为0.1 fs, 总的轨线条数
为 50000; H原子和CH+离子质心间的初始距离取

为15 Å, 在它附近的势能值很小, 约为 10−10 eV的
能量级,因此相互作用力非常弱,可将其忽略. 反应
的最大碰撞参数 bmax的确定方法是: 先运行 5000
条轨线, 初步确定 bmax的范围, 再选择用 50000条
轨线, 逐渐增加 b使其反应的轨线条数不再增加即

可 [21].

3 结果与分析

图 2描述了H + CH+ → C+ + H2(v = 0, 1, 3,
5, j = 0)的反应概率 (P00-all)随初始振动量子数的

变化情况. 在计算过程中, 碰撞能E = 500 meV,
将 bmax调为零可以得到反应的轨线条数,然后将其
与总的轨线条数作比, 可以求出每个振动量子数所
对应的反应概率. 从图形的整体上看, H和CH+发

生正碰时的反应概率在 v = 1 时最大, 但随着激发
态振动量子数的增加反应概率呈下降趋势.

图 3描述了H + CH+ → C+ + H2(v = 0, 1, 3,
5, j = 0)的反应截面. 我们知道, 反应截面对于一

个产物通道α是这样被定义的: σα = π(bmax)
2Nα

N
,

这里Nα表示最大碰撞参数 bmax的值满足反应式

收敛时所对应的反应轨线条数, N表示总的轨线条
数. 从整体上看图 3 , 会发现 v = 0激发到 v = 5能

级时, 反应截面由 17.02 Å2减小到 14.33 Å2. 可以
看出, 该放能反应的反应截面最大值和最小值之间
的差异很大, 也就是说振动量子数对此引起的变化
很明显.
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图 2 不同的振动态 (v = 0, 1, 3, 5)下H + CH+ →
C+ +H2 反应的反应概率 (P00-all)
Fig. 2. Reaction probability of the H + CH+ →
C+ +H2 reaction at different vibrational state (v = 0,
1, 3, 5).
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图 3 不同的振动态 (v = 0, 1, 3, 5)下H + CH+ →
C+ +H2 反应的横截面

Fig. 3. Integral reaction cross section of the H +

CH+ → C++H2 reaction at different vibrational state
(v = 0, 1, 3, 5).

图 4为H + CH+ → C+ + H2反应的k-j′两矢
量相关函数P (θr)的分布情况. 由图 4可知, 函数
P (θr)在 θr = 90◦时有一个明显的峰值, 并且关于
θr = 90◦呈轴对称分布. 这说明, 产物转动角动
量分布倾向于垂直矢量k的方向上. 当反应物分
子处于激发态时, 峰值明显变大而宽度基本没有
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改变, 这相比于基态取向效应大大增强, 且随着
激发态振动量子数的增加峰值的升高幅度更加明

显. 对CH+
2 体系, 通过图 4可以发现当 v = 0增加

到 v = 5时, 在 θr = 90◦处对应的P (θr)的峰值最

低为 0.56, 最高达到 0.7左右, 增加了 0.14. 而在这
之前本课题组研究该体系的碰撞能对此反应的影

响发现 [17], 碰撞能由 1 meV增加到 1000 meV时,
θr = 90◦ 对应的P (θr)的峰值最小值为 0.56, 最大
值为 0.65, 大约变化了 0.09. 通过比较我们不难发
现, 振动量子数对两矢量分布的影响比碰撞能稍大
一点.

v/

v/

v/

v/

θr/(O)

P
(θ
r)

0 30 60 90 120 150 180

0.4

0.5

0.6

0.7

图 4 (网刊彩色)不同的振动态 (v = 0, 1, 3, 5)下
H+ CH+ → C+ +H2 反应的P (θr)分布

Fig. 4. (color online) Angular distribution of P (θr) the
H+CH+ → C+ +H2 reaction at different vibrational
state (v = 0, 1, 3, 5).

图 5为H + CH+ → C+ + H2反应的k-k′-j′

三矢量相关函数P (φr) 的分布情况. 如图 5所示,
P (φr)分布关于φr = 180◦不对称, 反映了产物转
动角动量的强烈极化效应. 在 φr = 90◦时, 基态情
况 (v = 0)下有峰值出现, 但峰值不是很明显. 而
在激发态 (v = 1, 3, 5)情况下, 此处的峰值随振动
量子的增加逐渐增大, 当振动量子数 v = 5时峰值

达到最大. 在 φr = 270◦处, 基态时峰值基本处于
平缓状态, 而激发态处的峰值高于基态, 但随着振
动量子数的增加峰值无规律变化, 且在 v = 1处峰

值最大. 总体对比后发现, 在φr = 90◦处的峰值要

高于φr = 270◦处的峰值, 这也说明了产物分子转
动角动量 j′不仅沿着Y 轴有取向分布, 还定向于Y

轴的正方向并且定向效应非常强. 这种既有定向
又有取向的分布情况可以用三原子反应的排斥模

型 [26] 来解释.
图 6为H + CH+ → C+ + H2反应的产物转动

角动量的空间分布函数P (θr, φr). 图 6 (a)—(d)分

别对应振动激发 (v = 0, 1, 3, 5)的空间分布情况.
为了便于比较, 我们将图中的概率分布的显示范
围全部调整为 0.04—0.20区间段. 从图 6可以看出,
θr = 90◦和φr = 270◦处P (θr, φr)有明显大小不同

的峰值, 四幅图中 θr = 90◦的峰值都比φr = 270◦

处的峰值高, 并且随着反应物初始振动量子数的
增加, 峰值变得更高, 同时增高的程度也变得更明
显. 当反应物分子处于基态 (v = 0)和较低的振动
激发态 (v = 1)时, 如图 6 (a)和图 6 (b)所示, 发现
φr = 270◦处的峰值非常小, 这说明初始反应物分
子的振动激发对产物分子的转动定向效应的影响

不大. 而图 6 (c)和图 6 (d)中峰值却很明显, 此时的
反应物振动量子数分别为 v = 3和 v = 5. 因此, 随
着振动量子数的增加该分布也变得越来越集中, 这
说明产物的转动角动量的转动极化程度随之增强.
反应产物的空间分布P (θr, φr)与图 4中P (θr)分布

和图 5中P (φr)分布结果完全对应.
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图 5 (网刊彩色)不同的振动态 (v = 0, 1, 3, 5)下
H+ CH+ → C+ +H2 反应的P (φr)分布

Fig. 5. (color online) Angular distribution of P (φr) the
H+CH+ → C+ +H2 reaction at different vibrational
state (v = 0, 1, 3, 5).

图 7表示的是不同振动激发 (v = 0, 1, 3, 5)下,
H + CH+ → C+ + H2 反应的极化微分反应截面的

分布情况. 极化微分反应截面是描述k-k′-j′ 三矢
量相关或者产物的散射方向, 与产物转动角动量的
定向和取向无关. 图 7 (a)中 (2π/σ)(dσ00/dωt)只

与反应物及其产物的相对速度矢量有关, 我们不难
发现产物分子有明显的前向和后向散射, 且随振动
量子数的增加前向散射和后向散射程度有减弱的

趋势. 极化微分反应截面分量 (2π/σ)(dσ20/dωt)

在图 7 (b)中给出,与图 7 (a)曲线具有相反的分布

123401-4

http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn


物 理 学 报 Acta Phys. Sin. Vol. 66, No. 12 (2017) 123401

30
60
90

120

150

180

0.04

0.08

0.12

0.16

0.20

0
60

120

180

240

300
360 30

60
90

120

15
0

18
0

0.04

0.08

0.12

0.16

0.20

0
60

120

180

240
300
360

30
60
90

120

150

18
0

0.04

0.08

0.12

0.16

0.20

0
60

120

180

240
300
360 30

60
90

120

150

18
0

0.04

0.08

0.12

0.16

0.20

0
60

120

180

240
300
360

P
(θ
r,
ϕ
r)

θ
r/(O)

ϕ r
/(
O)

P
(θ
r,
ϕ
r)

θ
r/(O) ϕ r

/(
O)

P
(θ
r,
ϕ
r)

θ
r/(O)

ϕ r
/(
O)

P
(θ
r,
ϕ
r)

θ
r/(O)

ϕ r
/(
O)

(a) (b)

(c)
(d)

图 6 (网刊彩色)不同的振动态下H+ CH+ → C+ +H2反应的空间分布P (θr, φr) (a) v = 0; (b) v = 1; (c) v = 3; (d) v = 5

Fig. 6. (color online) Spatial distribution of P (θr, φr) of the H + CH+ → C+ + H2 reaction at different vibrational state:
(a) v = 0; (b) v = 1; (c) v = 3; (d) v = 5.
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Fig. 7. (color online) Four polarization dependent differential cross-sections of the H+CH+ → C++H2 reaction at different
vibrational state: (a) (2π/σ)(dσ00/dωt); (b) (2π/σ)(dσ20/dωt); (c) (2π/σ)(dσ21−/dωt); (d) (2π/σ)(dσ22+/dωt).
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趋势. 极化微分反应截面 (2π/σ)(dσ20/dωt) 的分

布情况也表明了 j′分布取向于垂直k的方向.
前面的两个截面 (图 7 (a)和图 7 (b))均为 q =

0的情况, 对于 q ̸= 0时如图 7 (c)和图 7 (d)所
示, (2π/σ)(dσ21−/dωt), (2π/σ)(dσ22+/dωt)的极

化微分反应截面在极端向前和极端向后散射的值

为零. 因在这些极限散射角的情况k-k′的平面不确

定,故 q ̸= 0时的极化微分反应截面的值必为零. 在
图 7 (c)中的四个振动能级下, (2π/σ)(dσ21−/dωt)

值有正有负, 没有较强的极化效应, 因此振动
量子数对该分布的影响较小. 从图 7 (d)可见
(2π/σ)(dσ22+/dωt)在整个角分布里是负值, 这表
明产物更倾向于Y 轴方向分布. 每个反应都有三个
强极化, 三个极化角分别在 30◦, 90◦, 和 150◦附近
最为强烈, 随着振动能级的变化, v = 1时取向效应

最明显.

4 结 论

本文采用准经典轨线法, 在最新的势能面 [18]

上对H(2S) + CH+(X1Σ+) → C+(2P) +H2(X1Σ+
g )

反应的反应概率、反应截面以及立体动力学性质

进行了研究. 结果表明, 反应概率和反应截面都随
反应物的初始振动量子数的增加呈下降趋势. 当
碰撞能E = 500 meV时, 理论计算的两矢量、三
矢量以及空间分布情况均随着振动量子数的增加,
产物的转动角动量更倾向于Y 轴的方向, 并且定
向于Y 轴的正方向. 同样极化微分反应截面也随
着振动量子数的变化而变化, 文中还描述了四个
极化微分反应截面的变化情况, (2π/σ)(dσ00/dωt)

随振动量子数的增加前向散射和后向散射均减弱,
(2π/σ)(dσ20/dωt)的分布与 (2π/σ)(dσ00/dωt)曲

线变化的趋势相反, 而 (2π/σ)(dσ21−/dωt) 没有较

强的极化, (2π/σ)(dσ22+/dωt) 的分布有三个强极

化, 且随着振动量子数的增加三个强极化的程度也
有明显的变化. 综上所述, 该反应的立体动力学性
质对振动量子数有很强的依赖性.
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Abstract
The effect of reagent vibrational excitation on the stereodynamical properties of H(2S) + CH+(X1Σ+) →

C+(2P) + H2(X1Σ+
g ) reaction is investigated by quasi-classical trajectory method on a globally smooth ab initio po-

tential surface of the 2A′ state at a collision energy of 500 meV. The reaction probability and the reaction cross-section
are also studied. In the calculation, the vibrational levels of the reactant molecules are taken as v = 0, 1, 3, 5 and j = 0,
respectively, where v is the vibrational quantum number and j is the rotational quantum number. The calculation results
show that the reaction probability reaches a maximum when v = 1, and then decreases with the vibrational quantum
number increasing. The integral cross-section decreases sharply with the increase of vibrational quantum number. The
potential distribution P (θr), the dihedral angle distribution P (φr), and the polarization-dependent generalized differen-
tial cross sections are calculated. P (θr) represents the relation between the reagent relative velocity k and the product
rotational angular momentum j′. P (φr) describes the correlation of k-k′-j′, in which k′ is the product reagent relative
velocity. The peak of P (θr) is at θr = 90◦ and symmetric with respect to 90◦, which shows that the product rotational
angular momentum vector is strongly aligned along the direction perpendicular to the relative velocity direction. The
peak of P (θr) distribution becomes increasingly obvious with the increase of the rotational quantum number. The di-
hedral angle distribution P (φr) tends to be asymmetric with respect to the k-k′ scattering plane (or about φr = 180◦),
directly reflecting the strong polarization of the product angular momentum for the title reaction. Each curve has two
evident peaks at about φr = 90◦ and φr = 270◦, but the two peak intensities are obviously different, which suggests that
j′ is not only aligned, but also strongly orientated along the Y -axis of the center-of-mass frame. The peak at φr = 90◦

is apparently stronger than that at φr = 270◦, which indicates that j′ tends to be oriented along the positive direction
of Y -axis. In order to validate more information, we also plot the angular momentum polarization in the forms of polar
plots θr and φr. The distribution of P (θr, φr) is well consistent with the distribution P (θr) and also the distribution
P (φr) of the products at different vibrational quantum states. In addition, the polarization-dependent differential cross
section is quite sensitive to the reagent vibrational excitation. Based on the obtained results, we find that the observed
excess of the methylidyne cation CH+ is closely related to the reactant of vibrational excitation in interstellar chemistry.
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