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Fig. 1. Output phase spaces under critical state with different amplitude of policy dynamic: (a) r = 0.8;

(b) » = 0.86; (c) r = 0.863.
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Fig. 6. Time domain waveform of ship-radiated signal

type one.
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Fig. 7.

ship-radiated signal type one: (a) Phase space one;
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Output phase spaces when the input is

(b) phase space two; (c) phase space three.
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bient noise: (a) Phase space one; (b) phase space two.
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Table 1. Phase space distribution sequence in the chaotic critical state.

xT

1 2 3 4 5 6 7 8 9 10

i 0.104 0.137 0.060 0.101 0.077 0.078 0.118 0.072 0.144 0.109
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2 KR FPREAR 2 34 51

Table 2. Phase space distribution sequence in the large-scale periodic state.

xT

1 2 3 4 5 6 7 8 9 10

i 0.119 0.166 0.055 0.092 0.069 0.067 0.091 0.055 0.166 0.120

®3FFBRAHE R 135

Table 3. Phase space distribution sequence of special phase space type one.

xT

1 2 3 4 5 6 7 8 9 10

i 0.001 0.001 0.090 0.034 0.195 0.086 0.343 0.068 0.131 0.051

R4 R 2 346 51

Table 4. Phase space distribution sequence of special phase space type two.

xT

1 2 3 4

6 7 8 9 10

i 0.075 0.225 0.135 0.555 0.001

0.003 0.001 0.003 0.001 0.001
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Fig. 10. Results of target detection.
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Fig. 11. (color online) Detection probability curves of

energy detection method.
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Abstract

In the marine environment, when the line spectra of underwater target radiated signal are unknown or the continuous
spectra are weak, it is extremely hard to accurately detect the underwater weak target. The line spectrum based method
commonly requires spectrum information for detection, and the continuous spectrum based energy method is hard to
achieve accurate detection in long distance. In this paper, an underwater radiated noise detection method based on
generalized Duffing oscillator detection system is proposed. Firstly, a generalized Duffing oscillator detection system for
non-periodic and non-stationary input signal is proposed through deducing the traditional Duffing oscillator detection
system that is perturbed by periodic signal. And the proposed generalized Duffing oscillator detection system is able
to detect the signals of targets without needing prior information. Secondly, when the target radiated signal (non-
periodic and non-stationary signal) is input into the generalized Duffing oscillator, a special form of output phase space
(a special state of motion) is discovered and the differences in output phase space among different input signals (periodic
stationary signals, nonperiodic non-stationary signals and the target radiated signals) are analyzed. It is found that the
special phase space has different form from the output phase spaces of other kinds of signals; accordingly the underwater
targets can be detected through the representation of the difference between special phase space and ordinary phase
space. Thirdly, a discrete distribution sequence calculation method based on phase space is proposed for the precise
and efficient judgment of system motion. The proposed calculation method defines a similar-grid function, based on
which, the distribution sequence calculation method of output phase space is deduced, and the distribution sequences of
different kinds of output phase spaces are calculated. The method realizes an embedded expression of system output by
using the statistical complexity, therefore achieving the embedded underwater target detection when the line spectra of
underwater target radiated signal are unknown or the continuous spectra are weak. The analysis result indicates that the
method is of low-computation. Finally, the experimental results in the sea are described and the lowest signalto-noise
ratio (SNR) of the method is calculated to be —9.133 dB. Simulation and experimental results have shown that the
proposed method can detect target successfully in a lower SNR than traditional detection method, and the real-time
performance can meet the demand for underwater detection. The method in this paper provides new ideas and ways
of thinking for underwater target detection, and has very important reference value for low SNR long-distance target

detection under real condition.

Keywords: underwater target detection, generalized Duffing oscillator system, statistical complexity,

phase space
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