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Fig. 1. (color online) Typical curves of the reciprocal
of temperature of phase transition Ss(H) and curves
of free energy: The blue curve on the top represent
Bs(H) of typical phase transition, the red dashed lines
correspond to phase transition of NPT ensemble, the
red full lines correspond to the reciprocal of tempera-
ture of NPT ensemble and gNPT, and the other blue
curves show the free energy at T1, Tc, T» (8 = 1/kgT).
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Fig. 3. (color online) The temperature as a function of average enthalpy under different pressures: Hollow circles correspond
to transition process from gas to liquid, and solid asterisks correspond to the opposite process, the colourful solid lines
correspond to the results of gNPT ensemble, the black dashed lines with “x” represent the results of NPT ensemble at
30 atm, and the right arrow corresponds to the result of heating process and the left arrow corresponds to the result of

cooling process. The configurations of phase transition at 30 atm are shown on the right, the red balls represent liquid-like

molecules, and the gray balls represent gas-like molecules.
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the number of molecules in the biggest cluster (c) as functions of average enthalpy under different pressures.
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Fig. 5. (color online) Shape factor dependence of average enthalpy at phase-coexisting area under differ-
ent pressures. The snapshots below show the configurations of A, B and C of curves around coexisting

temperature.
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Abstract

Exploring the atom-scale details such as morphology of coexisting phase during phase transitions is very important
for understanding their microscopic mechanism. While most theories, such as the classic nucleation theory, usually
over-simplify the character of the critical nucleus, like the shape, structure, and most current experiment techniques are
hardly to capture the instantaneous microscopic details, the atomistic molecular dynamics (MD) or Monte Carlo (MC)
simulation provides a promise to detect the intermediate process of phase transitions. However, the standard canonical-
ensemble MD/MC simulation technique can not sufficiently sample the instantaneous (unstable in thermodynamics)
coexistent phase. Therefore, the MC in the general canonical ensemble, such as general isothermal-volume ensemble
(gNVT), combined with the enhanced sampling techniques, such as the replica exchange (RE) method, was presented
to stabilize then to sufficiently sample the atomic conformations of the phase coexistence. Due to the limit of the RE,
the RE-MC simulation on gNVT is usually applied in smaller systems. In this paper, we first extend the gNVT-based
MC simulation to the MD in the generalized isothermal-isobaric ensemble (gNPT) and very simply implement it in the
standard atomic MD soft packages without modifying the code, so that we can use these packages in MD simulation of
realistic systems. Then we simulate the vapour-liquid phase transition of all-atomic water model. At least at not very
low pressures, we find that the individual gNPT simulation is already enough to reach equilibrium in any region of the
phase transition, not only in the normal liquid and vapour regions, but in the super-saturation regions, and even in the
vapour-liquid coexistent regions. The obtained energy-temperature curve in the cooling gNPT well matches with that
in the heating procedure without any hysteresis. It indicates that it is not necessary to use the RE technique in the
gNPT, and the intermediate states during phase transitions in larger systems can be effectively simulated by a series of
independent individual gNPT-MD simulations in the standard soft packages. We also propose a method to accurately
determine the interface between the two phases in the coexistence, then provide a quantitative measurement about the
interface tension and the morphology of the coexistent phase in the larger all-atomic water at various temperatures and
pressures. The results show that the liquid droplet (or vapour bubble) at the low pressure is close to a sphere due to
the larger interface tension, as expectation of the classic nucleation theory of the first-order phase phase transition, but
becomes more and more irregular as the decrease of the interfacial tension as increasing the pressure to approach to the

critical pressure, where the phase transition is the second order one.

Keywords: generalized canonical ensemble, gas liquid transition, gas liquid coexistence, molecular

dynamics
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