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Fig. 1. (color online) Optimized structure of VOgz: (a) 96-atom supercell; (b) 95-atom supercell with O1 vacancy;

(c) 95-atom supercell with O2 vacancy; (d) 94-atom supercell with O1 and O2 vacancies. Red balls represent oxygen

atoms and blue represent vanadium atoms. According to symmetry of structure, Ol and O2 are different oxygens.

Units of the V—V bond lengths in each figure are A.

163102-2


http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn

¥ 12 Z R Acta Phys. Sin.

Vol. 66, No. 16 (2017) 163102

124 5 1 i B 78 23 s R A Ak, SR 5 FE AR AG L 1Y)
127 SR M g5 R (P Bl B ST 2 x 2 x 2 1996
JR - B M, FEEAT 78 o s R LAk, RS 15 3 96 4
JR MR, EILE L (a). B AR
JRFREBEAE T, 2EMETFREAET. BT
SER NI FRME, O1F1 02 43 AR R 5 24N [A] (1) 4 i
T ACF 96 ANE T MBS 451 5 8
HN2a = 11.110 A, 2b = 9.086 A, 2¢ = 10.711 A,
a =~ =90° f = 121.8°, V—V 4 f& fil K 5 5
AN 2.44 AFI3.17 AWK 1), 5z g R Bl 5
GAHRLF. A5 W E T O1 25X 02 25X
1195451101 5 O2 [FI 227X 1) 94 4N i VOo
. 1 (b)—(d) Al T O1 A28, 0275
I O1ALAT O2 A7 | if 23 /e e A 5 A L. %
A I A% S O R B A O EL R A R
JN, ABLEE ES R B V-V K B AR A R (W
Bl1). AEETI OLAL 2o 0247 278, 01
5 O2 [A] Iy 7 X KB 7y il R 3.17, 2.78, 2.97,

2.77 F12.93 A. A XM B KB K H 2SI A
0.20—0.40 A, JX AT A2 A5 BRAR 4% 1) — N 5 2 A

B2 (a)—(d) 45 T S B oL T R4S 25 B F0
DS EE. WA EEEEERTLEH,
V 3d R O 2p 5 Z (AT By 1 24k, M s TR 5
WK EZEH V 3d A/ AL, 7 BRIFT AR 2 7E V 3d
AlEHEAT. B2 () 24196 MR T VO, M1AHIIZS
B AT EORAF AR RE M M1 1) B2 0.68 eV,
59288 71 0.67 eV ) BRAF A AR 4 Bl A se s
GRS R A A G R AR RO T
BERL0.67 eV —5 P81 (W3R 1), FIZ i f) HSE B i
THEE R RO JEREEMLN EE RV
JEF 1 ) B I E T B 2 R AR S 4y
Sl BT IR A [ AR R A3 95 AN R T Y
VO, M1AH LK O1 A1 02 [Fli 25 7 ) 94 4 B 1 1)
M1AH. FFFCEE R RIL, 24 01 S Anit, JEmEME M1
(971 5 EH R R 11 0.67 eV 488 0.23 eV, 02 2= i)
A% 4 0.20 eV, O1 A1 02 [F 257484 0.15 eV,

40 e

40 [VO2 —DOS
T
> 20 F
[
~
n 10 |
2
g o
=« 1.0Ff —V
. — 01
o — 02
A o5l

0 f 1 raN =N

-8 -6 -4 -2 0 2 4
E—Egp/eV
40
(c) — DOS

30 FVO2-02
I
> 20Ff
[}
a 10 -
o}
2 o
= 1.0} v
- — 01
o) — 02
A oost

o Lo A I A

-8 -6 -4 -2 0 2 4
E—Ep/eV

2 (MTRE) SEEENSESEE

40
(b) — DOS

30 F VO2-01
7
> 20
[
~
0 10 |
2
Y —
5 1.0r — 01
w0 — 02
o
A o5t

O “'—A

-8 -6 -4 -2 0 2 4
E—Eg/eV

40 @

30| vO2- — DOS
- 01-02
> 20
[}
@ 10}
2
o, 0
= 1.0} —V
- — o1
o — 02
A o5t

0 1 L ‘-Oé
-8 —6 -4 -2 0 2 4
E—Eg/eV

(a) 96 METF I VO #ilf; (b) f O1 A= 95 MEF VO #iil; (c) & 02

B3y 95 MET VO2 #iM; (d) FIRFEH O1 Azl O2 ff) 94 MET VO i, SR B N ESERE, N

Fig. 2. (color online) Total and partial density of states (DOS and PDOS) : (a) 96-atom VO3 supercell; (b) 95-atom
VO3 supercell with O1 vacancy; (c¢) 95-atom VO2 supercell with O2 vacancy; (d) 94-atom VOg supercell with O1
and O2 vacancies. The bottom in each figure is DOS and the lower is PDOS.

163102-3


http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn

¥ 12 Z R Acta Phys. Sin.

Vol. 66, No. 16 (2017) 163102

R ASCHIR TR AN S T VO A5 B H R R T i IR RE R AL

Table 1. Band gaps of the present calculations are compared with the minimum energy of phonon which

induced insulator-metal transition in VOs.
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Abstract

Switching of vanadium dioxide (VOz) from low-temperature insulating phase to high-temperature rutile phase can
be induced by photons with a certain energy. Photoinduced insulator-metal transition is found experimentally in VO2
polycrystalline film by photos with energy even below 0.67 eV. However, insulator-metal transition in single crystal can
only be induced when photo energyis above 0.67 eV. In order to understand these experimental phenomena, we make
a first-principle study on low-temperature non-magnetic M1 phase of VO2 with oxygen vacancy by density functional
theory calculations based on the Heyd-Scuseria-Ernzerhof screened hybrid functional. According to symmetry, M1 phase
has two kinds of different oxygen vacancies, O1 and O2 vacancies. Calculations are made on structures and electronic
properties of nonmagnetic M1 phases with O1 and O2 vacancies, respectively. The present theoretical results show that
neither the short vanadium-vanadium (V—V) bond length near O1 or O2 vacancy nor the lattice parameters almost
change but the long V—V bond length near O1 or O2 vacancy decreases due to the oxygen vacancy. The long V—V
bond lengths near O1 and O2 vacancies are about 2.80 A and 2.95 A, respectively, but the long V—V bond length is
3.17 A in pure M1. The insulating band gap is opened between V 3d bands, and hybridization happens between V 3d
and O 2p orbitals. Furthermore, the present theoretical results demonstrate that the band gap of pure nonmagnetic
M1 is 0.68 eV while M1 with O1 vacancy, O2 vacancy, and two oxygen vacancies including O1 and O2, have band gaps
of 0.23 eV, 0.20 eV, and 0.15 eV, respectively. The band gap decreases probably because oxygen vacancy results in the

decease of the long V—V bond length near it. The present results can explain the experimental results well.

Keywords: oxygen vacancy, VOg, density functional theory

PACS: 31.15.Ew, 31.15.Ar, 31.10.42z DOI: 10.7498/aps.66.163102

* Project supported by the National Natural Science Foundation of China (Grant Nos. U1332205, 11274153, 10974081,
10979017) and the Doctoral Research Project of JUST (Nos. JKD120114001).

1 Corresponding author. E-mail: xswu@nju.edu.cn

163102-6


http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn
http://dx.doi.org/10.7498/aps.66.163102

	1引    言
	2计算方法
	3结果与讨论
	Fig 1
	Fig 2
	Table 1


	4结    论
	References
	Abstract

