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Fig. 7. (a) Hexagonal lattice; (b) Energy band folding. d/p band inversion with the increasing of the distance
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Fig. 8. (a) Introducing effective potential with time modulation [*1]; (b) introducing effective potential with spatial

modulation [42]; (c) theoretical design of robust optical delay lines with coupled resonator optical waveguides

(d) phononic Floquet topological insulator 58]
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Fig. 10. (a) Photonic Floquet topological insulator (421, (b) realizing photonic Dirac point with lattice symmetry (731,
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SPECIAL TOPIC — Topological classical waves

Topological properties of artificial bandgap materials®
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Abstract

Recently, artificial bandgap materials (such as photonic crystals and phononic crystals) have been becoming the
research hotspot of the next generation intelligent materials, because of its extremely designable, tunable and controllable
capacity of classical waves. On the other hand, topological material phase, originally proposed and first demonstrated in
Fermionic electronic systems, has been proposed in more and more Bosonic systems. In this review paper, we first focus on
some of the representative photonic/phononic topological models, and four common types of topological photonic system
are discussed: 1) photonic/phononic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological
insulator and the associated pseudo-time-reversal symmetry protected mechanism; 3) time/space periodically modulated
photonic Floquet topological insulator; 4) a summary and outlook including a brief introduction of Zak phase in one-

dimensional systems and Weyl point in three-dimensional systems. Finally, the underlying Dirac model is analyzed.

Keywords: artificial bandgap material, topology, Dirac equation
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