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Fig. 1. Excitation spectra for h = 0.5,v = 1.
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antiferromagnetic phase, paramagnetic phase and chiral phase, respectively.
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ki h AL R G HENIHEAR, Cre #W RN 0.
KOS 1y = 1IN 5 B8 A B 00, AR T
LA Y, PR B AN A Cre BB b HOBG 0T
Wb S NIEFRE, 2D = 0, Cre 5 h HIHK
WRARMD = 04 HE. BVIMUL, FRER e+
Cre MKHD. TERIEA T, DX Crp A REH
Wi, DS (a).
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9 v = 1IAR DKL TG Cre METHTER xgp BE L INEL  (a) HIEAEL T Cre; (b) HITABHE L
T xn; () D = 1 BERFBEAMES T Cr; (d) D = 1B RS TF xpp
Fig. 9. The relative entropy Crg and the quantum coherence susceptibility xgy with respect to D for v = 1:

(a) Crg for the nearest-neighbor qubits; (b) xgg for the nearest-neighbor qubits; (¢) Crg for different distances r

between two qubits with D = 1; (d) xgy for different distances r between two qubits with D = 1.

5 % W

ASCHEFE T 5 47 DM AR AR ALK — 4E XY #%
R PPRE SR T AR ) L S M ORI R B, 45
TE MR, KBSk bR O B T AT AR B
Wbr &M E TR A E. BT EA
AN AFAE TR AR A2 18], A7 £ 2 B S Y Y
1% 2 8], B DM A AR 2 ¥ 2l 81 AL I 5
REALE, EEVERTREBIRIEM. fail 7 —&it
SLYRTS, X LEAA T LEAR 2 S0 L BOA 15 20E Ab
BRSO BT 3 — 2P A AR

KA EiXEREHK
X H B AP RISHAT,
Ai=c¢f +ei,Bi=cf —ci. (A1)
EAT R I AR R

{Ai, Aj} = 265, {Bi, Bj} = —20i5, {Ai, Bj} = 0. (A2)

T, WA LS e of=A [} AB;, of=
iBi [1'2h A;By, oi= AiBi. B8 o 4h i e e
PREL:

Gij = ({oioj)

= <B7;A7;+1Bi+1Ai+2...Aj_1Bj_1Aj>. (A3)
UM, y 73R 2 2 ISR LLRIR A :

GYY = (—1)"(AiBit1Ais1 Biya..Bj-14;1B;), (A4)
G7j = (AiBiA;Bj). (A5)

BEAh, AT DATHSRA XORIR GTY A G It

fo; = 7i<BiAi+1Bi+1Ai+2...Aj71ijlBj>, (AG)
Gf’j = —i<A1‘Ai+1B¢+1Ai+2...Ajlej71Aj>. (A7)

AR 4 v 7 B, T LA 2 SRR 1 S REAT 40 i, SRk
YO ERTAME R ETe, AR, T G;ff, iR
ATAK R ATER N (Paffian) P, 81 G927 = pf(U7Y), Hrp
a, B=z,y. WA)iEL, HATUE M 2n x 2n (n = |j — i|) 4

SRS FRAFE 4T 51 2K, B
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0 <B¢Bi+1> <BiBi+2>
—<B¢B¢+1> 0 <Bi+lBi+2>
i = | —(BiBj_1) —(Biy1Bj_1) —(Biy2B; 1) -

—(BiAit1) —(Bix1Ait1) —(Bit2Ait1) -

—(Bid;)  —(Bix14;) —(Bis24;)
0 (AiAit1) (AiAit2)
—(Aidit) 0 (Ait14iy2)

UYY = (177" —(AiAjo1) —(AirAjo1) —(AipaAja) -

—(A;Bj)  —(Ait1By)

MxT 2 7 &,

Gij = (Bidi)(BjAj) — (B Ai)(BiA;) — (AiA;)(BiBj).
(A10)

ATULRIL, X TARR k, 2 H TR e B2 IR I

16, WKL T by R T IESWA TCHOR, B (b b) = 0. BT,
(AiAj) = 6i5, (BiBj) = —6i,;. #AJER, AR i 5
ERRMERSEANE, B (BiB)) = (AiA;) =0. TR,
FRICRE AT LRI A n x n 4E Toeplitz 55 FE 4T 51 KR

(BiAit1)  (BiAit2) (Bid;j)

G = (Bit1Ait1) (Biy1Ait2) ... (Biy24;) (A1)
(Bj—1dit1) (Bj—1diy2) ... (Bj-14;)
(Bit1Ai) (Biy1Aiv1) ... (Biy145-1)

G — (Bit24i) (Biy2Ait1) .. (Biy24;-1) (A12)

(BjAi)  (BjAit1) (BjAj-1)
G = (BiAi)(B;A;) — (B Ai)(BiA;). (A13)
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Abstract
In this paper, we study the quantum coherence of one-dimensional transverse XY model with Dzyaloshinskii-Moriya

interaction, which is given by the following Hamiltonian:

N N
Hxy = Z (HTfyafafH + %afafﬂ - haf) + Z D(oiol ,—ocloii1). (8)
i=1 i=1
Here, 0 < v < 1 is the anisotropic parameter, h is the magnitude of the transverse magnetic field, D is the strength
of Dzyaloshinskii-Moriya (DM) interaction along the z direction. The limiting cases such as v = 0 and 1 reduce to
the isotropic XX model and the Ising model, respectively. We use the Jordan-Winger transform to map explicitly spin
operators into spinless fermion operators, and then adopt the discrete Fourier transform and the Bogoliubov transform
to solve the Hamiltonian Eq. (8) analytically. When the DM interactions appear, the excitation spectrum becomes
asymmetric in the momentum space and is not always positive, and thus a gapless chiral phase is induced. Based on
the exact solutions, three phases are identified by varying the parameters: antiferromagnetic phase, paramagnetic phase,
and gapless chiral phase. The antiferromagnetic phase is characterized by the dominant x-component nearest correlation
function, while the paramagnetic phase can be characterized by the z component of spin correlation function. The
two-site correlation functions G5¥ and G¥® (r is the distance between two sites) are nonvanishing in the gapless chiral
phase, and they act as good order parameters to identify this phase. The critical lines correspond to h = 1, v = 2D,
and h = \/m for v > 0. When v = 0, there is no antiferromagnetic phase. We also find that the correlation
functions undergo a rapid change across the quantum critical points, which can be pinpointed by the first-order derivative.
In addition, G5Y decreases oscillatingly with the increase of distance r. The correlation function G7Y for v = 0 oscillates
more dramatically than for 7y = 1. The upper boundary of the envelope is approximated as G7Y ~ r~'/2 and the lower
boundary is approximately GrY ~ 32 50 the long-range order is absent in the gapless chiral phase. Besides, we study
various quantum coherence measures to quantify the quantum correlations of Eq.(8). One finds that the relative entropy
Cre and the Jensen-Shannon entropy Cjs are able to capture the quantum phase transitions, and quantum critical points
are readily discriminated by their first derivative. We conclude that both quantum coherence measures can well signify
the second-order quantum phase transitions. Moreover, we also point out a few differences in deriving the correlation

functions and the associated density matrix in systems with broken reflection symmetry.

Keywords: quantum phase transitions, quantum coherence, Jordan-Wigner transformation
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