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Table 1. Information of experiment sample.

A e Egi] AR
LM8&33 Operational Amplifier Input stage: PNP Texas Instrument
LM158 Operational Amplifier Input stage: PNP Texas Instrument
LM2903 Dual Voltage Comparator Input stage: PNP Texas Instrument
LM339 Quad Voltage Comparator Input stage: PNP Texas Instrument
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Fig. 1. Schematic diagram of dose switching approach.
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Fig. 2. Schematic diagram of high to low temperature

approach.
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Fig. 3. Dose rate switching evaluation results of LM833: (a) Actual response rule; (b) inverse curve.
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Fig. 4. Dose rate switching evaluation results of LM158: (a) Actual response rule; (b) iinverse curve.
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Fig. 5. Dose rate switching evaluation results of LM2903: (a) Actual response rule; (b) inverse curve.
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Fig. 6. Dose rate switching evaluation results of LM339: (a) Actual response rule; (b) inverse curve.
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Fig. 7. Switched temperature evaluation results: (a) LM833; (b) LM158.
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Fig. 8. Switched temperature evaluation results: (a) LM2903; (b) LM339.
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Table 2. Evaluation factors of accelerated method at

different total dose levels.

I 200 Gy (Si) 500 Gy (Si) 1000 Gy/(Si)
TRER Bl RREE RE BENER R
LM833 1.124 1204  — 1134 1.232
LM158 1.068 0.986 1.054 0.980 0.979
LM2903 1.092 2.263 1.033 1.207 1.177
LM339 1.393 1961 00989 1.107 1.199
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Fig. 9. Energy-level scheme of the recombination cen-

ter and hole trap.
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Table 3. Relation between normalized escape proba-
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Fig. 10. View of the oxide showing the process of depassivation and passivation: (a) Depassivation of proton

reaction with Si—H bonds; (b) passivation of Hydrogen molecules and interface trap.
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Abstract

The linear bipolar devices and integrated circuits (ICs) which are subjected to ionizing radiation exhibit parametric
degradations due to current-gain decrease, and the amount of degradation on various types of bipolar devices is much
more significant at low-dose-rate than at high-dose-rate. Such an enhanced low-dose-rate sensitivity (ELDRS) is con-
sidered to be one of the major challenges for radiation-tolerance testing intended for space systems. Therefore, it is of
great significance to explore an efficient and practical test for the ELDRS in the linear bipolar devices and ICs. The
different experiments have been implemented on four types of bipolar ICs for evaluating their responses to low-dose-rate
irradiation. The experiments involve the dose rate switching approach performed under high to low-dose-rate irradiation
and temperature switching approach performed under high to low temperature irradiation. Good agreement is observed
between predictive curves obtained at dose rate switching irradiation and the low-dose-rate results, and the irradiation
time for the dose rate switching approach is reduced from 4 months to a week. Further, the results also suggest that
the device degradation rate can affect the prediction of the total dose. This is because the curves examined at different
doses have a lot of overlap when the devices with fast degradation rates are performed. In addition to temperature
switching irradiation, the radiation response of the same type of device is much more significant than that obtained in
low-dose rate irradiation, and this method will shorten the irradiation time to 12 h. Based on the analysis of mechanisms
behind the switched dose rate and temperature irradiation, switching temperature irradiation can accelerate the release
of protons and buildup of interface traps, which is the key physical mechanism for ELDRS. Firstly, a higher irradiation
temperature can enhance the transport of holes and release of protons to form interface traps, resulting in the enhanced
degradation occurring at first dose examined. Further, the reducing temperature sequence suppresses the hydrogen
dimerization process during the irradiation that follows, which is strongly temperature dependent and contributes to
interface trap annealing. Moreover, further decrease in temperature can restrict the interface trap annealing because the
barrier for this process is higher and it has less opportunity to take place at lower temperature. Additionally, the hydro-
gen molecules converted from hydrogen dimerization may extend the liberation of protons, by the hydrogen molecules
cracking mechanisms, leading to the additional degradation. Therefore, the temperature switching irradiation is shown
to be a conservative and efficient method for ELDRS in bipolar devices, and this provides an insight into hardness

assurance testing.
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