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Fig. 1. (a) Schematic structure of ionic donor (D) and acceptor (A~) mixed stacks in high- and low-temperature phases
of TTF-BA. The arrow, underline and ellipsoid represent spin —1/2, a dimer and a singlet state, respectively. P denotes
electric polarization. (b) Crystal structure of TTF-BA. (c) Temperature dependence of spin susceptibility. (d) Normalized

spectral weight of the a; mode at 1422 cm™! as a measure of local DT A~ dimerization. (e) Dielectric constant at 10 kHz.

(f) Spontaneous polarization along the b axis [40].
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Fig. 2. (a) Hlumination-dependent saturation magnetization of anisotropic P3HT¢.75:PCBMo.25 complex at room temperature

(1 emu/cm® = 10% A/m); (b) illumination-dependent saturation polarization of anisotropic P3HT¢.75:PCBMg.25 complex at

room temperature; (c) magnetic field-dependent saturation polarization; increasing magnetic fields of two directions, parallel

(Fy,) and perpendicular (F|) to the fiber axis, were applied to the sample to measure two in-plane polarizations (P,, and P, );

(d) the relative dielectric constant can also be tuned by magnetic field [

45]
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Fig. 3. Anisotropy of magnetization and magnetoelectric coupling in SCTCs: (a) The in-plane and out-of-plane

magnetic hysteresis (M-H) loops of SCTCs; (b) the atomic force microscope image of one SCTC, and the scheme

of spin cone distribution due to the exciton-lattice coupling; the width and orientation of spin cone would be

different based on the exciton-lattice coupling extent and spin direction; (c) the length/thickness of SCTC dependent

anisotropy of magnetization (AM) between in-plane (easy axis) and out-of-plane (hard axis) directions; the inset

shows the angle dependent saturation magnetization M (the 0°, 180°, and 360° means magnetic field parallel to

in-plane direction); (d) electric field dependent magnetization (magnetoelectric coupling) of SCTC devices; the inset

shows the magnetic field dependent magnetoelectric coupling coefficient
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Fig. 4. (a) Spin cone distribution along the long axis (b axis) of the charge-transfer cocrystal superstructures
(CTCCs) and the polarization induced by charge ordering and charge-transfer at the interface. The direction and
width of the spin cone depend on the spin direction and the charge-lattice coupling extent. The positive and negative
charges in polythiophene and Cgg are used for the illustration of charge-transfer and dipoles, which do not represent

the real charge distribution in the cocrystals. (b) Light intensity-dependent magnetoelectric coupling of CTCCs (561,
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is tuned on (off); (c) the P(VDF-TrFE) thickness-dependent tunability of magnetization in both bottom (circles)
and top locations (squares), where the optimized thickness of P(VDF-TYFE) is 45 nm, applied electric field is
1.8 x 105 V/cm and SWCNT loading ratio is 2 wt%; (d) the electric-field-dependent magnetoelectric coupling with
45 nm thick P(VDF-TYFE) [39],
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SPECIAL TOPIC — Multiferroicity: Physics, materials, and devices
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Abstract

Multiferroics, showing simultaneous electric and magnetic degree of freedom, has aroused increasing interest due
to tailored multiferroic properties and magneto-electric coupling for shaping the development of energy-efficient mul-
tifunctional devices. Now, the multiferroics can be classified as two groups: 1) inorganic multiferroics, which can be
single-phase, multi-phases oxide multiferroic or multiferroic heterojunction and 2) organic counterpart, which is mostly
determined by instinct charge-transfer behavior. But it is difficult to find the polarization and the magnetization co-
exist in a single-phase oxide multiferroic material, and their coupling range in the multiferroic heterojunction is only
several atomic layers, which limits the applications. As a result, more and more different types of organic multifer-
roics have been studied. Some organic complexes can display dual ferroelectric and ferromagnetic properties at ambient
temperature, e.g. thiophene-fullerene donor-acceptor charge-transfer networks. The organic charge-transfer complex
is based on electron donor (DT) and acceptor (A™) assembly. DTA™ are long-range ordering, the excitons have s
lifetime and £1/2 spin, which contributes to the room temperature ferroelectricity and ferromagnetism. The excitons
can be excited by external magnetic field, electric field, illumination and stress, and eventually influence the polariza-
tion, magnetization and magnetoelectric coupling coefficient. However, there are still many problems to be solved, i.e.,
searching for new charge-transfer systems and preparing supramolecular co-crystal with ordered molecular chain, further
improving magnetoelectric properties; developing the heterojunction technology and epitaxial growth of organic ferro-
electric or ferromagnetic systems on excited organic films, which is expected to greatly improve their magnetoelectric
coupling effects; inventing more new charge transport organic multiferroic devices to extend the application scope of new
multiferroic devices in actual industrial production. Generally speaking, the organic charge-transfer complexes not only
greatly enrich the room temperature multiferroics materials, but also provide the technical basis for developing the new

multifunctional electronic devices.

Keywords: organic multiferroics, magneto-electric coupling, charge-transfer

PACS: 75.85.4+t, 77.84.—s, 72.20.Jv DOI: 10.7498 /aps.67.20180759

* Project supported by the National Natural Science Foundation of China (Grant Nos. 51790492, 51431006, 51472118) and
the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 30916011104).

t Corresponding author. E-mail: yuanguoliang@njust.edu.cn

1 Corresponding author. E-mail: liujm@nju.edu.cn

157509-9


http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn
http://dx.doi.org/10.7498/aps.67.20180759

	1引    言
	2激发态电荷转移有机体
	2.1 四硫戊烯-对溴电荷转移体的多铁性
	Fig 1

	2.2 聚(3-己基噻吩)-苯基C61丁酸甲酯电荷转移体的室温多铁性
	Fig 2

	2.3 噻吩-富勒烯电荷转移体的室温多铁性
	Fig 3

	2.4 聚噻吩-C60电荷转移体的室温多铁性
	2.5 电荷转移有机薄膜-铁电薄膜异质结的室温多铁性
	Fig 4
	Fig 5


	3结论与展望
	References
	Abstract

