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Fig. 1. Molecular distribution in x-z plan of system at

the (a) beginning, (b) nucleation, and (c) final period.
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Fig. 2. Dimensionless (a) potential energy and (b) interaction force depends on the distance between two particles.
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Fig. 4. Heterogeneous nucleation process with different wall wettability: (a) o = 0.14, 8 = 0.6; (b) o = 0.14,
B8=0.7; (c) a=0.14, 8 =0.8; (d) « =0.14, 8 =0.9; (¢) « =0.14, 8 =1.0; (f) « = 0.20, B8 = 1.0.
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1.0 ‘
(@), ——9.27
0.8 ! — 1847
\ —— 3687
0.6- ——— 5527
% ] —— 7367
< —— 9207
0.4
—— 11047
——— 12887
0.2
T T
0 50 100 150 200 250
z/o
1.0 ‘
(b) | —9.27
| —— 55207
0.8
——— 73607
——— 82807
069 —— 87407
g —— 92007
0.4 ——— 96607
——— 108807
0.2 &
o
T T T T T
0 50 100 150 200 250
z/o

6 UIRIEE 2z T REEESMAE (a) HEESECN
a=0.14, B =1.0; (b) ARSHE N a =0.14, 3=0.6

Fig. 6. Density profile of argon along z coordinate:
(a) Potential energy parameters is a = 0.14, 8 = 1.0;
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Abstract

With the rapid development of nanotechnology, nucleate boiling has been widely applied to the thermal management
of nanoelectronics, owing to its highly-efficient heat transfer characteristics. Considering the scale effects, such as
temperature jump at solid-liquid interface, a further study of nucleation boiling mechanism at a microscopic level is
needed. At present, extensive studies have been carried out for providing a significant insight into the formation of
nano-bubbles in a nanoscale thermal system, but the effect of heat transfer efficiency affected by the surface wettability
on bubble nucleation over solid substrate is rarely available in the literature. Therefore, in this paper, the effect of surface
wettability on the initial nucleation process and growth rate of bubbles are investigated and the mechanism of bubble
nucleation on a nanoscale is analyzed, by the molecular dynamics simulation. The modified Lennard-Jones potential is
used for investigating the solid-liquid interaction. Changing the potential parameters o and S can obtain different surface
wettability. The atomic sites, liquid density profiles and bubble nucleus volumes are computed to compare the processes
of bubble nucleation on different surfaces. The variation of liquid temperature, potential and absorbed heat flux with
heating time are evaluated to explore the mechanism of bubble nucleation. The simulation results show that the surface
wettability influences the bubble nucleation and heat transfer at liquid-solid interface significantly. On the one hand, the
bubble nucleation is promoted by properly increasing the liquid-solid interaction, which is distinctly different from the
existing classical theory related to nano-bubble preferably formed on a hydrophobic surface. This is because the thermal
resistance of the solid-liquid interface on a nanoscale cannot be neglected. The interface thermal resistance will decrease
with the increase of wettability. Therefore, the heat transfer efficiency is higher for a stronger liquid-solid interaction
so that the liquid over the hot wall obtains more energy to make bubble nucleus generated earlier. On the other hand,
the surface wettability also influences the bubble growth rate. The stronger the liquid-solid interaction, the faster the
bubble grows. When the volume of bubble reaches a certain value, a vapor film is formed on the substrate, leading to
film boiling. Furthermore, it also illustrates that initial heat flux increases with time. In this stage, the heat flux curve
shows two kinds of slopes, corresponding to the occurrence of evaporation and bubble nucleation, respectively. Then,

after a certain time, the heat flux profile presents a declining trend, indicating a change into film boiling.

Keywords: nanoscale, bubble nucleation, wettability, interface effect
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