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LARGE DEFLECTION OF A CIRCULAR CLAMPED PLATE
UNDER UNIFORM PRESSURE

By Wei-Zang Chien (£ {& &)
Department of Mechanical Engineeving, Nalional Tsing Hua Universily.

(Reoeived November 23, 1947)

ABSTRACT

The problem of large detlection of a clamped circular plate under uniform pressure is
studied by the method of successive approximation in terms of the parameter representing the
ratio of the center deflection to the thickness. The tedious numerical computations involved
in Way’s power series solution are thus avoided. The yielding condition at the edge checks
very well with the experimental results given by McPherson, Ramberg and Levy. The method
may be easily extended to any other boundary conditions and loading details.

I. INTRODUCTION

Although the solution of Kirchhoff’s equation of small deflection of thin
plates under various lateral loads and boundary conditions are well-known, there
are very few satisfactory treatments of the large deflection theory based upon
the famous Kdrmdn equations. The difficultics in solving the Kdrmdn equations
are chiefly due to their non-linearity'. '

So far only two cases have been studied with numerical certainty, namely, a
clamped circular plate under uniform pressure and a s‘mply supported rectangular
plate under combined uniform pressure. The casc of circular plate was solved by
S. Way? by the method of power series, and the casc of rectangular plate was
solved by S. Levy® in terms of trigonometric series. Both methods invblve the
numerical determination of an infinite number of coefficients for a given value of

loading. Hence the numerical work invhived is excessive.

1. Th. von Kirmin, “The Engineer Grapples with Noa-lincar Problems,”’ Bull. Amer,
Math. Soc. 468 (1940), 615-683. '

2. S. Way, “Bending of Circalar Piate with Large Dotlectian’”, 4.5 M. E. Transactions,
Applied Mechanics, 56 (1934), 627-G36.

3. S. Levy, ““Binding of Rectangular Plate with Large Delflections”, N.4.C.4. Report,
No. 737 (1942).
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In this paper, we shall treat the case of clamped circular plate gy means
of the perturbation method based upon the smallness of center deflection. The
results obtained by this method are equivalent to that of power series method, but
in greatly simplified form. The extension of this method to any other conditions
will not be difficult. The work culminates in the determination of yieldir\lg con-
dition along the clamped edge.

»

1I. ELASTIC CIRCULAR PLATE

For a circular plate of uniform thickness 2 and radius 2 under uniform

pressure ¢, the equations of equilibrium can be written as follows:

dZ
dar?

dw

1 dM; d
Z (N, y 22
dr (A ar )t (1)

daM; 1
7

Ty (rMy)=

<

_;r (rN,)—N,ZO, (2)

where M;, M, are tangential and radial bending moments, N;, N, are tangential
and radial membrane stresses, » is the r:i’dia] coordinate and w is the normal
displacement. These equations are valid not only for the elastic plate, but also
for the plate deformed beyond the elastic limit.

For an elastic plate, let % be the radial displacement, then the radial and
circumferential strain in the middle surface are

,_ du 1/dw)? Y
e":h*z((;lr . T ®

At a distance 2z from the middle surface, there are additional strain due to
bending, namely

v _ d*w __yaw 1
€y = Z—Eﬁ—’ € = Z_li; e (4)

By Hooke’s law, it follows that the stress at a distance z from the middle surface
can be written as the sum of stretching stress ¢,", ;" and bending stress o,’, 0}":

er=0s+oy, 6i=0i +of, (5)
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where
., E [ dw | 1(doY’ “w ’:"V";{% 1 (:w) 6
o T -l ar +7(% T rl e du ©
" Ez (d'w , udw ' " Fz ( 1dw d”w)
— f S D ttadie R 7 el
ar 1——u2 art FPORL v dr ot 1~u2( radr ‘udr? 7
Consequently, the I:;ending moment and membrane stress are
dw 1 dw) (1 dw a*w
: = Rialihidnd M;=—=D e =
M,= D\gyn T rdr/, f rdr T ), )
N, =ho,’ , Ny==hoy'. ' 9)
where D is the fluxial rigidity
_. Ep
C121-p) (10)

An useful relation between u, Ny, X, can be obtained by eliminating w from (6):

‘l -

Lm0 0, Y=g (N, —uNy), (11)
Furthermore, eliminating # from equations (6), and using equation (2), we
obtain the equation of compatibility: ‘

—at1a W
2L N (dT 0, (12)

7

By means of (8), the equation (1) may be simplified, after integration once, into
the following form:

al a dw dw , qr ,
D= 2 yZ2 =N, 4 L,
dy v dr 4 ar " Ay F 2 (13)

A '
Equations (12), (13) are the two famous Kdrmdn equations for the determination

of the two unknowns w and N,. The boundary conditions for a clamped plate
are '

A
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W= ‘f;: =0 at r=-a,
1 2 _finite  at r=0,
y dar

(14
Eh % =N, —uN,=2(yN)— uN,=0 at r—a, I
r dr

N, =finite at r—0.

We begin by 'transforming these equations to a dimensionless form, in which
the following notations are introduced: ‘

3
Eh 57; Nf:

a?

Ehs

a?

S P=Sla-um)  as)

._.wv f—
W*'E, Ny WE

We introduce also a dimensionless variabie 7,
y=1—— (16)

With these quantities, equations (2), (12), (13) become

as,

Si=8,-2(1—1) an a7y
a el lawNe_ '
2 la—ws ]+ H(Ey =0, (18)
S l@f,  dWwl_ 3 o, 3. . adW
—zﬂ_d‘n_?,k_(l W d—n_]_ 16 P 4»<1 “)Sy an (19)
The boﬁndary conditions are
w=2" dS —(1—u)S; =0 at edge(1=0), (20
an an
ZVZ , S, remain finite at center (3 =1). 21y

Equations (18), (19) are the two equations for the determination of the two
unknowns W, S, under the boundary conditions given in (20), (21). From (17),
S; can be calculated when Sy is given.
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2

I
111, SOLUTION OF KA,RMAN EQUATIONS BY PERTURBATION METHOD

We shall now prdceéd to obtain the solution of Kdrmdn equations by the
perturbation method based upon the smallness of maximum deflection at center.
Let

W”l = Wn:‘[ = (L}:;)rﬁ. ) ( 22)

It is evident tha_t

P=RW, ) WW W, ), S=Si0,, 0. S=SiW,,0. (23)

For small W or within the possible range of convergence we may expand every

quantity in a';cendmg powers of W

]36 P=cW,, + Wit as Wit ..

W =w,(0) Wt oy W, + w0l W3+ .. (24)
Sy=f) W, + f(n) Wi, + 100 WE, +

5: == go{ ) Wiy + 8 W3, + go(n) W5, +

where s are constants, and f, g, w’s are functions of 7 to be determined. These
" expressions are valid only in the sense of asymptotic nature, and their conver-
-gences are not required.

We substitute the expressions (24) into (17),. (18), (19), and-also into the
boundary conditions (20), (21), (22). By collecting terms of the successive order
in Wm, we obtain a sequence of linear differential equations for ,, w,, fi, g2
oy, Wy, f4, &4 €tc. accompanied by the corresponding boundary conditions.

For a;, w,;, we find the following problem (Problem 1):

iddr,[( — dW’]— 125)

w, (D=1, u,(0)=1w,(0)=0, and w»,'(1) remains finite.

A}
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The solution of (1) is obvious:
wy () =g cy=1. (26)

This is the well-known solution of a clamped plate with very small deflection
(or the solution of the Kirchhoff theory). For fi(7), g:(%), we have the equations
and the boundary conditions as follows (Problem I1):

/ a \ :
g =/fdn)—21—1) dn Jo
d’ r B 1 dw1)2~_ (27/\
2 |1 Tﬂfz]'*' 2( o)=Y ]
g3(0)— ufs0)==0, fs(1)remains finite.

The solution of problem 11 is

Sl = é (13# o+ 72’+";‘),
1/ 2 |
ga(1) :6'(1’—'4% =n—nt+ 7??)' (28)

The next approximation gives the equations (Problem 111I):

1 4| o dwe ] __%(___3 y By
| AR | e

(29)

ws(0)= wi(0)=wx1) =0  and wj(1) remains finite.

where w,, f, are giveh respectively in (26), (28). The solution of problem 111
gives

1 [y
= 3—73u),
g 360(1+#) (17 3u)

—4
win= ta-wma—n (B2 Lamrsraor), Gy

360 #

For f43), g{n), we find the following problem (Problem 1V)
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gﬂ"?) = f.x("Z) "2’%(1_"])» ]
dw1 dwy "_i (31)
O J
£4(0)—ufy(0)=0, and f,(1) remains finite. '

Making use of wy(r), ws(r;) given in (26), (30), we find the solution of problem
1V as follows:

160—104¢ 80 524 . 501—249u
fin= 75160 A=) =g “ 1—?1 B2 419 -
—123 r,5—39r,ﬁ—q,;7} (32)
v 1 ey Jw(160—=104u) 80— 524 o, 4568 —2356u 3
84.’7)——*5"'0— (1—¢?) \ (1—u)? 1= (472 + 1=«

3279 1011“4 885"]5_‘21";“—1357;7 }
1—« :

We shall now be satisfied with the process of successive approximations up to the
present stage. The results obtained above may be summarized as follows.
1v. DISCUSSION OF THE APPROXIMATE SOLUTION
The relation between center deflection and pressure for an elastic plate of

uniform thickness with clamped edge is given by

_I__P Wt 115, (33)

where from (30)

@y s (1) (173 73,01 | (34)

For various values of «, the constant ¢, in (34) takes the following values:

w 0.250  0.275  0.300  0.325  0.350
ay: 0.536  0.540  0.544  0.54%  0.551
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The relation (33) has also been investigated approximately by a number of
authors. Their results differ from cach other in the values of «, as follows: For
== O 200 R

Ngdait, ct=:0.583,

Timoshenko®,  «;==0.488,

Federhofers, = 410 14 1) (19— 94)=0.530,
Waters?, 0ty :,516(1+y)(23—9.u)—0.474,

McPherson, Ramberg. Levy?, a;=0.588.

It should be noted both Ndddi and Federhofer derive the relation by
solving -the von Kdrmdn differential equations under certain assumed physical
conditions. N&4ddi considers a plate subjected to a pressure which is only
approximately uniform, while Federhofer assumes a suitable radial distribution
of membrane displacement. Timoshenko aud Waters use the energy method
based upon an assumed form of normal displacement. McPherson, Ramberg and
Levy follow the procedure used by Foppl? for the treatment of square plate under
normal pressure. Foppl makes the assumption that the total pressure is the sum
of two parts, namely, the pressure resisting bending and the pressure carrying the
membrane action. In addition to this, Foppl assumes also that the bending of
the plate is proportional to that given by Kirchhoff’s theory while the extension
of the plate is proportional to that for a membrane.

A numerical solution of the differential equations based upon the power
series method was first obtained by Way. His numerical results as well as the

4. A. Nadai, Elastische Platten, (Julius Springer, Berlin. 1925).

5. S. Timoshenko,Theory of Plates and Shells, pp. 333-337, 451 (McGra.wi Hil], 1940), »

6. K. Federhofer, ‘*‘Zur Berechnung der duennen Kreisplatte mit grosser Ausbiegung,’”
Forschung aunf dem Gebiete des Tngenieurwesens Ausg. B, Bd 7, Heft 3, VDI-Verlag G.m.b.H,
{Berlin), p.148-151, (1936)

7. E.O. Waters, Discussion on S. Way’s paper given in reference 2.
8. A. Fippl and L, Foppl, Drang and Zwang, vol 1, (R. Oldenbourg, Munich, 1924).
9. A. McPherson, W. Ramberg, and S. Levy, ‘“Normal Pressure Tests of Circular Plates
Wwith Clamped edges,”” N.A4.C.4. Report, No. 744 (1942),
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results given above are shown graphically in figure 1 for ©=0.300. These five
curves differ from the results obtained by the present method less than 8 percent.
The present results not only agrec perfectly well with Way’s numerical solution,
but also appears to be near to the average values of all the others. Itisa well-
known fact that, for low pressures, the experimental results agree closely with
the theoretical curves, but for larger pressure, the experimental deflections
consistently exceed the theoretical values by four to twelve percent or more,

This disagreement can probably be explained by the partial yielding in the edge,
and by the action of initial compressive stress set up 'by} the clamping procedure,

The pfesent results give also the stresses in the plate in explicit expressions.
Let us denote the dimensionless form of the radial tensile stress o in the
middle surface by 33/(%), and the dimensionless form of the radial bending
stress o, at the convex side of the plate by 21<r, ), or |

crat . 0,a
Z=Fm 0 T Ee

Hence we have the following useful results:
2;(0)=reduced radial tensile stress at edge

W 1 ' '
= . — Y W2 ;
“3(1~p){ 1+ gag L+ (0=260) ] “*}, (35a)
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2., (1)=reduced radial tensile stress at center

3

=L{ (5—241)-4»1«— (14+uw)(68—-148u+ 66u®) W2 } >(3Sb)
61— 1) A TT R H OB

>

Z;(O)=reduced radial bending stress at cdge

— 4W{;1 " 1 N 214" 3 l s

= 1.—!12 *l 1+ 3‘6‘—0(1 }‘].l) (85 43[1) W”lj , bia.)
25,(1)=reduced radial bending stress at center

S 2Ww 1 _ 2 ‘

=L 1 g (0 (29-190) wm}. (36b)

These stresses for the case #=10.300 are shown in figure 2. They are numerically
in perfect agreement with that obtained by Way. However, due to extremely

45 T 1
2,10} = BENDING STRESS
40 AT ROGE “
B Zp0)
ZyU 1= Benping STRESS |
ms l& 35 F At CENTER
5 '5: Z ¢ (0)= MEMBRANE STRESS
0§ Ay Epat ]
I S (' )= MEMBRANE STRESS
N AT CeNTER
25
w3 /
w
5}
s 20
z A
" /
8 t5
=
~
5]
2 0 /
5 . Sdn /,
éi/" :«_# ;\
0

[ w
wa=(2) _,

Fig. 2 Variation of Stresses with Center Deflection
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slow convergence of the power series used by Way, further extension of power
series method for larger deflections becomes very tedious. Since our solution is
asymptotic in nature, the problem of convergence does not come into consideration.

V. YIELDING ALONG THE EDGE

From the figure 2, one observes that the radial stress in the extreme fiber
along the edge increases with the increasing normal deflection in the center.
When yielding stress is reached, the bending strength in the edge breaks
gradually. Hence, once yielding occurs in the edge, the boundary conditions for
a clamped plate no longer has any physical justification.

The condition of yielding along the edge can be computed from the assumption
of von-Mises-Hencky theory of plastic failure. 1f ¢4, 0a, 05 are three principle
stresses, the yielding condition is '

(01— 0P +(0y— 03P+ (73— 01 =2E, , (37)
where E| is the yielding tensile stress. At the edge of'a circular plate, radial
displacement vanishes. Hence

01=07¢ , Ge== 0o =" U0ye Us<<‘0'm3 ) (38)

where o,., 070 are the extreme fiber strcss on the convex side in radial and
circumferential directions at the edge. By neglecting v, we have

Tye = __.__-—._——Eﬂ G le =~ ___g-——u—“‘gf])wg. (59)
V1—u 4yt ' 1—u +p?
The condition of yielding at edge is therefore
22 e f Ny L
ey T (2 0+ 20 ), (40)

Or by equations (35), (36), the yielding condition along the edge may be written as

L‘ P ——

{ 44 —-(1+ W Wi+ ”1+P>(83 D WS,

1890 (L 40— 260 n} 41

The theoretical yielding condition at the center may be computed in a similar
manner. At the center of the plate, the principle stresses are equal; hence

'S
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0170 Oy, o5& 50; , T (42)
where g, is the extreme fibre stress in a radial direction at the center of plate op
the convex side. By neglecting ¢3, we have similarly '
e Ey. (43
The condition of yielding at the center is therefore

@By Wu {19005 300, — 1l§<1+ @)(29 —19)W2,

BE  6(1—p) L
-—%S(H,t) (68— 1484+ 6642) W;’,L}- 44)

The equations (41), (44) are plotted in figure 3. The experimental points are
obtained from the data published by McPherson, Ramberg, and Levy®. 1t can
be seen that the present theory agrees very well with the experimental results.
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