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IN THE STATISTICAL THEORY OF SUPERLATTICES
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D;partment of Physics, National Tsing Hua University, Peiping.
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ABSTRACT

The generalization of the quasi-chemical method of Fowler and Guggenheim in the
statistical theory of superlattices made by onc of the authors is exténded to a binary alloy
of any composition. The formulac are very similar to those for the composition 1:I. The
alloy AuCug is treated in more detail,

1. INTRODUCTION,

In a recent paper one of the authors' has generalized the quasi-chemical
method of Fowler and Guggenheim to any groups of sites in the case of a binary
alloy with equal numbers of A and B atoms. It is the purposc_of this paper to
generalize this theory to any value of the concentration ratio of A and B atoms.
For this purpose it is necessary to change the notation of the previous paper,
and we shall adopt the notation proposed by Wang® in his generalization of
Bethe’s theory. A

In the following treatment we shall confine oursclves to a binary alloy
whose atoms are distributed in two classes of sites in the crystal, each site
being surrounded by z neighbouring sites. Only interactions between neighbouring
atoms will be taken into account, while those between more distant atoms will be
“neglected. ’

In Wang’s notation the number of A atoms is denoted by NGO, that of B
atoms by N(1—8), N being the total number of atoms. The number of «-sites
is denoted by Nr, that of §-sites by N(1—7). Ina given distribution of atoms
among the lattice sites the number of A atoms in a-sites is denoted by N78,,
that in 8-sites by N(1—7)8p3, so that

1. C. N. Yang, J. Chem. Phys.13 (1945), 66; cited as I.”
2. J. S. Wang, Phys. Rev. BT (1945), 98. co
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70, +(1—7) 85=0. (1)

The numbers of B atoms in «- and §-sites are reSpecti;ze]y Nr(1-0,) and
: N(1—7) (1—0p). .The (long-distance) orders, s, of the distribution is defined by

s= 6, 035. (2

The purpose of the statistical theory.of superlattices is ta determine the
equilibrium value of 6, or of s as a function of the temperature and the composi-
tion 8, and then deduce the energy of the alloy.

]

2. FUNDAMENTAL EQUATIONS OF THE QUASI-CHEMICAL METHOD.

In the quasi-chemical method we confine our attention to a group of sites
chosen out of the whole crystal.‘? The whole crystal is conceived as a superposi-
tion of such groups, all of identical form. Each group consists of a connected set
of sites, but two different groups may have common sites.

Although the groups are all of identical form, they may differ in the nature
of the sites they contain. For example, in the case of a group consisting of two
nearest neighbouring sites in a face-centred cubic lattice, some of the groups will
consist of «-f pairs and some -8 pairs, provided all the cube corners arc
a-sites and all the face centres arc g-sites. The groups are therefore divided
into a humber of different types by the diiference in the nature of the sites
they contain.

"In a given choice of the groups, let there be %-sites in each group with P
pairs of nearest neighbouring sites, and let the total number of groups be M.
Suppose that among the M groups there are / different types with W¢; groups of
the type & (A=1,2,...,0), such that 25 ¢;=1. Nevertheless, the sites of each
group will be Jabelled by 1,2,....,n in one and the same way. It may happen that
a site labelled with the number ¢ is an c-site in one group and a f-site in
another. Let ¢; (4=1,2,....,#) be a number specifying the state of occupation of
the i-th site; ¢;=1 if the 4-t& site is occupied by an A atom?®, ¢;=0 ifitis
occupied by a B atom. In a given distribution of the atoms let [g4,9s,....,gx]; be
the number of groups of the type 4 having ¢, A atoms on the site 1, ¢o A atoms

3. It may be mentioned that the theory can be developed equally well by giving attention to
the wrong atoms, as done in I, insteall of to the A atoms.
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on thesite 2, etc, Since the total number of groups of the type L is M¢;, we have

2 (91 ¢aeer guli= My, (3)

q
where the summation is taken over all possible values of the g’s. Now since the
fraction of ea-sites occupied by A atoms is 8,, and the fraction of §-sites
occupied by A atoms is 8, it follows that the fraction of the groups of the type A

. having the ¢-#4 site occupied by an A atom is 8, or 83 according as the:-th

site in the type A is an «-or a g-site. Hence

2 i [, oens@n)i= Mej 05 4)
1 /
where 8 ; is equal to 8, if the -t/ site in the type A is an «-site and is equal to
Op if it is a @-site.
The equations (3) and (4) suggest a chemical analogy. Imagine a gaseous
assembly consisting of molecules with the chemical formulae

XY, (Y )ggen (V)

If the number of such molecules be [¢1.93,....,qn];, then the equations (3) and (4)
cdn be interpreted as equations expressing that the wvariation in the numbers of
the molecules are subject to the condition that the total numbers of the atoms

XA, Yh,..., Yishall remain fixed at the values Mc;, Mé;0;;,...., Mc;0;,, Tespec-

tively. The basic assumption in the quasi-chemical method is that the equilibrium
value of the number [¢;, ¢s,.....qn); in the crystal is the same as the equilibrium
value of the number of molecules in the corresponding chemical assembly with the
chemical energy of combination equal to the configurational energy of our group in
the distribution (¢, ¢2,....gn). The configurational energy is a function of ¢,,....qx
and is obviously the same for all types of groups. Let us denote this energy by %.

The equilibrium value of the number of molecules in a gaseous assembly is*

(1, Qoo @nl; =&; Uy uip...ufpe T (5)

where &), #;y.....1jn are parameters to be determined by substituting (5) into (3)
and (4), We shall assume (5)to be true for our groups in the alloy. 1t can be

4. See R. H. Fowler, Statistical Mechanics, 2nd ed., p. 163, eq. (478),
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shown, as done in I, that the error of assuming (5) becomes negligibly small as the
group of sites becomes very large. '
Let us introduce the function ¢ of u); defined by
Lot gy 9% o~y KT
Pi Eq ;uj‘l-.--(ul" e ’ . (6)

+ Then the substitution of (5) into (3) and (4) leads to

L91s M, Sy aa;m:Mcﬁ:.i, (7)

Eliminating &;, we obtain

2

i ~In @ =6 (8)

Wi

The parameters y;; are uniquely determined by these equations, As T=»oothey
approach ‘the following limiting values "

Wiy =03/A—030). - o (9)

The sum of the energies of all the M groups is

, - a
2 (gl =1 & AT 2
Aoq A

F]
— MRT? —In o;.
%lcz =7 9

Now the sum of the pairs of nearest neighbours in the M groups is Mp, while that
in the actual ¢rystal is 3Nz Hence the average energy of the alloy will be
¥Nz/Mp times the above expression, viz.,

Nz 7]
T3 —ln ¢;
25 F ;3 T . 10)

v E =

3. THE FREE ENERG\Y AND THE EQUILIBRIUM DISTRIBUTION.

The average configurational energy can be expressed ‘in terms of the confi-
gurational partition function P(8,, 83, T) by the well-known relation

a i

E=kT*>"P(0,, bg, T). | -
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Inversely the partition function can be obtained from the average energy by

integration. We have

In P (Ga, 05, T)=In g8, 0+ ST (11)

k1 2’
where

(Nrit [N(1—)j!
80 0= g ST M1 =8,00 [M1=7)8 4] [N(1=7)(1~0a)

is the value of P in the limit of T=x .
The free energy F is related to the partition function by the simple relation

F=—%T1n P(6,, 0, 1), - (12)

The integral in (11) can be evaluated with the help-of a Legendre transfor-
mation in the same way as done in I. Let

WO, 05 T) =3l (Ing;—330;; In uz). (13
4 7

It is easy to show that .
. oY _ d1n @;
(57‘ 0. ap‘“?c}‘ aT l)!li,i ’

and so

T.dT Nz T oy
. T i — T—-—— —_ T
_ngkT’ P w};‘c Inq; d 75 Jeo aTd

- zzv—;{l/} (ea) 6)8: T/_lp (ea’ 613’ °°)}'

The value of ¥(8,, 03, )can be determined with the help of (9). When the
result is substituted into (11) and (12), we obtain '

F=—

2 NeT fE ¢y (In =328, In u;5)
2p g ;

+7D[0,n8 . +(1— 6, In(1—8,)] +(1—7\D[8 g6 g+ (1 — Gp)ln(l——ep)}} , (14)

-
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where D:n-—lf_

In the derivation of (14) the following relation has'been used:

7):. 6, f(8,)=nlrf (8.)+(1—7) f(8p)) (15)
v

This relation follows from the fact that among the total number of sites in the
M groups, M#» in number. Mwr of which are «-sites and Mn{1— ) are f-sites.

The equilibrium distribution is characterized by the value of the order s,
which can be obtained by minimizing the free cnergy. If we regard F as a
function of s, 8, T, we have

(%I:')e,f f%’(l—f) {f1 (s,8)—fis, 6,T)}. (16)

with

-

.0 1—6p
f‘—mn_ﬂ;(l-—f)i) , fo= )Z, ¢; 0ji In w;i,
where g;; is 1fr or —1/(1—7) according as 8; is 8, or 8. The equilibrium
value of s is a solution of the equation ' '

‘his, 0)=fs(s, 8, T) (17)

The solution will give 2 minimum of the free ¢nergy when

ofy ~0fs .
851 P (18)

We shall now show that (17) is always satisfied by s=0. When s=0 we
have 8,=0pg and f;=0. Then 6;;=0 and a solution of (8) is y;;=u, for all 2 and
. Since the solution is unique, this is the only solution. Applying (15) to f; we
cbtain ‘ ‘

fz-;:lfi_c;, 0;i Inu=mnln ,u'(-;—-——}::):a

3

Hence (17) is satisfied by s=0.

F

- i

s
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When T=-% we have

' = ,90&.(‘1_:0:3) — 4
fa(s, 8, ®»)=nln (-T‘ml-— 5. ~~1-)f1,

and the only solution is s=0.

When the temperature is below a certain critical temperature there yill be at
least one non-zero root s of (17). 1In the theory of Bragg and Williams® an
equation of the form (17) is also obtained in which £, is a linear function of s.
These authors have shown that in the case of #=1} the root >0 gives a minimum
of the free energy and the critical temperature is determined by the equation

COMECONS

In the case of =%, on the other hand, there are three roots of s (s=0 is one of

them), of which the largest one, s* say, gives dan absolute minimum of the free
energy when the temperature is below a certain crétical temperature 7; determined ,
by the condition that the free energy for the root s==0 is equal to that for the
root s*:

F0,8, To)=F(s*, 6, T,). (20)

Since the difference between (19) and (20) is mainly due to the diffetence
between the function f; in the two cases, we should expect the same equations (19)
and (20) to apply to the present theory.

4. SOME GENERAL THEOREMS.

The energy X depends on the interactions V', ., Vpp, V 5 between pairs

" of atoms 44, BB, AB, respectively, in the form

A=psa Vaa+ tpp Ve + Pup Vs (21)

where p 4 4, PR Pap aTe respectively the number of nearest A4, BB, AB
pairs in #he group under consideration. The equilibrium property of the alloy
depends, however, only on the combination

5. W. L. Bragg and E. J, Williams, Proc. Roy. Soc. A 151 (1935), 540; E. J. Williams,

Proc. Roy. Soc. A 182 (1935), 231.
¢
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V=3Vya+ Vpp)=Vyp : (22)

of the interaction energies. We shall show that this is true in our theory. We

proceed to prove the following theorem:

(¢) The free energy is changed by a constant when either (@) both Vg and
Vg are replaced by V and V45 by 0, or (b) both V 45 and Vgp are replaced by
Oand V4 ,0by 2V..

Suppose we have the replacement (a). Then X is altered to

. X=(pgq +tpp V-

Now if z; denotes the number of nearest neighbouring sites of the i-th site in the
group under consideration. then we shall have

bt BB+ Pap =P = t2%,
L . )

ZI’AAJ’PAB:? gi %i. (23)

The difference between £ and %’ can be reduced to

X=A'=[Vyp — ‘Z\VAA ~Vpplp+ ¥V 44 —Vpp) 2.4 2.
q

Let us denote by &;’, u'j; the parameters corresponding to the energy %". Then we
have

[rsen »qnly =& (W pn) Dol 3y 97 64 1ET

_By comparing with (5) it is evident that the equilibrium property will be the
same as in the case where Z is used if

Ei/ =8 exp{—[Vyp =¥V 44 —Vpp plkT},

wy'i=wy; exp { —¥ AA BB )ifkT3. .
The relation between ¢ and @;” will be

91 =prexp {[Vap —4V 44 —Vpp ) plAT}

&}
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.and the difference between F and F’ becomes

:

, NETT. g/, My
F—fF=_*% ¢ (ln—é— 6 In A
2p IE;E i\Ingy —Z0uin o

24

N | o ~ ;
=25 1 WVap— 4V 44 —Vpp) pt 20 0524V, ,~ Vpp) }

Jri
=52N{V gt (O —5)(V 4, =V}

which is a constant independent of the temperature. This proves the theorem for
the replacement (a).

For the replacement (b) we have

U =2puV

and ‘
L-%" = VBB p+Vyp _VBB DR

The equilibrium property will be the same as in the case where X is used if
S§i/=5 exp{—Vpp plkT},
@i =uy; exp {'—(VAB —Vgp )2;[kT}.

Then the same conclusion as in the case {a) follows.
We proceed to prove some further theorems.

(41) Two sites of the same nature (namely, both are a-sites or both are
B-sites) situaled symmetrically in the group have equal parameters ;.

It is easy to see that for two sites i and j which are situated symmetrically in

 the group the function ¢; will be symmetrical in y7; and ygj. Since by hypothesis

01:=0;7, eq. (8) will give equal values for p;; and u;;.

(4i¢) If the parameters p; and w'; (we drop the subscript A for simplicity)
corresponding to the seis of values 0, s and 0°, s’ are comnected by the relation
t; u; =1 (for all 4), then

04+0'=1, s=-—5s,

provided we use the replacement (a) in theorem (3).
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When the replacement (a) has been made the energy will be symmetrical
in 4 and B atoms, and the energy expression will be unaltered when 1—g¢;
is substituted for ¢;. Thus we find (again drop the subscript )

Pl =BTt 96)e 41T = 53 Tty 45 64T
t

_—_q(y,i’)—l Zn(y'i)l"'qi e“'XlkT :I-I(”i')—l.q;(”i’)'
t (3

and consequently

3'1n P _ ! dIng
ou; ou;’

()iz‘u,-

Since this is true for 41l 4, we have 8 =1— 8’ and s# -5’
As corollaries of theorem (iii), we have
() IfV,4,=Vgp =V, V,p5=0, then

(@) n u;is an odd function of s if 0 =%, and an 0dd function of 0 —% when
s=0;

(8)  the derivatives @ In u;[/00 and @ In u;[ds are unaltered when 8 and s are
ssmultaneously changed to 1— 0 and—s;

(¢) when s=0 we have all u's equal, and n=0 when 0 =0, u=1 when 6 ==},
p=0c0 when §=1.

The last part (¢) is not a direct consequence of (iii), but eq. (8) should also be
used,

(v) The critical temperature for an AB alloy (r=1%)is symmetrical with
respect to 0 =7%. g

This is a consequence of (iv) (b). TFor the equation (19) for the determin-
ation of the critical temperature as a function of 8 in the case of r=1%, which
reads

. 9

is unaltered when 0 is changed to 1-—8.

’y
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5. APPLICATION TO AuCus.

The face-centred cubic alloy AuCu, has been treated in I for the special
case of 8 =%. We shall now remove this restriction, b.ut shall still choose
the tetrahedron as our group of sites. The tetrahedron consists of one «-site
and three §-sites, and fhey are all of the same type. We have

7’=%, 2=12, n=4, p:ﬁ, D=3.

Let us replace, V,, by 2V and V,p and Vgzp both by 0, and denote

the parameter for the a-site by » and that for the S-site by . using theorems
(i) and (ii) in section 4. The function ¢ is

@=(1+43u+3n w2+ u3)+» (14 3p u+ 3rPud+ 18>, (25)
where
nzc—lVlkT.

Eq. (8) become

! o 07 -
5y MP=0e  ugIn g=30, (26)

where the factor 3 in the second equation is obtained by combining the three
equations for the three g-sites.

The expression (14) for the free energy becomes ™
—F[NkT=1n p—=8,1In v—=3 0g In u
i
+3[0,m0,+(1—0,)In (1—0 )]+ 3[0pIn 8p+(1—0p) In(1—6p)]. (27)
The equation (17) for the determination of the equilibrium value of the degree
of order becomes

9, (1—0p

31n Fall=0p)
" Bg1—0,

=4 (28)
u
In the case of 6:=%, the values of s and E as functions of the temperature
are calculated and plotted in figs. 1 and 2. For other values of 8, the values of
of s as a function of 8 at T==0 and the values of the critical temperature as a
function of @ are calculated and plotted in figs. 3 and 4. The method of
calculation is:



70 C. N. YANG & Y. Y. L1

For figs. 1 and 2, we first assume a value of 7. We then assume a value of
1¢, and calculate the values of » and s from (26), and substitute into (28), which is
usually not satisfied. Next assume a different value of 4 and repeat the calculation.
The valuc of @ whick satisfies (28) is finally obtained by interpolation, and the
corresponding value of s deduced. The valuc of E is then determined by substi-

tuting the values of u, », s into (10). »

For the fig. 3 we assume a very small but non-zero value of 7, and deter-
mine the values of ¥ and » in orders of 9. 1t is found that as @ varies from 0 to
1, the orders of u and » also vary from 7° to 173, Giving a value of 8 we assume
a value of s and calculate u and » from (26), and substitute the results into (28)-
The value of s which renders (28) satisfied is then obtained by interpolation.

For the fig. 4 we first assume a value of . Then assume a value of 9. The
corresponding values of s and u, » which satisfy (26) and (28) are obtained by
assuming successively different values of ¢ and determining the correct value of u
by interpolation. Determine also the value of w corresponding to s=0. This
value of ¢ is simply obtained from the special case of (26) in which 6,=03=29
and u=v». Then calculate the values of F/(NET In 10) cofresponding to both s==0
and the non-zero value of s and compare their values. Next assume a different
value of @ and repeat the calculations. The value of 6 which satisfies (20) is
obtained by interpolation. To one valucof T there are usually two values of 6
satisfying (20).

From the figure 4 it is seen that the maximum critical temperature occurs at
a composition 8 =0. 255, which is slightly highcr than the stoichiometric ratio §.

In conclusion the-authors wish to thank Professor J. S. Wang for his

encouragement and advice.

L]
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Fig. 1~—The dependence of s on temper- Fig. 2—The dependence of the configu~
ature {or the 4By alloy in a face centred cubic rational energy on temperature for the 4By
alttice.0=4. alloy in a face-centred cubic lattice, &==4.
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composition 6 for 4By alloy.



