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ABSTRACT

A relaxational bulk visco-elastic theory is formulated, leading to an equation recently
assumed by Hall. A derivation is given of an expression for the coefficient of sound attenuation
resulting from both shearing and bulk viscosities. The result is compared with classical
hydrodynamics generalized in a manner similar to that given by Tisza.

1. INTRODUCTION

It is recently well established that the experimental values of the
absorption coefficients of ultrasonic. waves in polyatomic. gases and liquids
exceed those classically calculated from the effect of ordinary (shearing)
viscosity and that of heat conductivity. This excessive part of attenuation
has been satisfactorily explained by certain molecular processes that
are relaxational. In the case of gases? this interpretation is based on
the assﬁnption that a much larger number of collisions is required for the
molecular rotation and vibration to attain the equilibrium state than the
translation, so that the establishment of the steady state of the internal
degrees of freedom lags behind that of the external ones. This time lag,
if not small compared to the period of the sound wave, results in a dissi-
pation of energy. = In the case of liquids®*, variation of the structure of the
liquid, which involves a rearrangement of the molecules and requires a
certain activation energy, is assumed to accompany the uniform dilatational
movement of the molecules, and it is this structure change that lags be-

Herzfeld K. F. and Rice, F.O. Phys. Rev. 31 (1929), 691

Richards, W. T. Rev. Mod. Phys. 11 (1939), 36.

Frenkel, J. Kinetic Theory of Liquids (Clarendon Press, Oxford, 1946), 1V, 5, pp. 208-209.
Hall, L. Phys. Rev. 73 (1948), 775.
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hind the otherwise uniform molecular motion. In both cases, the effect |

relaxation may be represented phenomenblogically by a second coefficien
of viscosity, usually called the bulk or volume viscosity. 3

Another observable effect of the volume viscosity is the streaming
y a beam of sound. This phenomenon was '«1:“

flow of the fluid caused b
and subsequently demonsirated by

correctly interpreted by Eckart®
Liebermann® as furnishing another experimental method of determining
the volume viscosity. ' 1

In this article, a visco-elastic theory is formulated and an expressio
for the coefficient of sound absorption due to both kinds of viscosit
derived. Tisza’s generalization of classical hydrodynamics is examin ¢
and the results of the two theories are compared.

g, RELAXATIONAL VISCO-ELASTIC THEORY
of a fluid element due to a constant.

change of the applied pressure ‘be composed of two parts: one that is
brought about instantaneously and another that, on account of the bulk
viscosity, takes time to accomplish.  Then, denoting the relative com-

pression, — A7/ 7, by s, we have

Assume that the dilatation

N

50 == Soo T Sr»

where s, is the equilibrium value of s (ultimately) produced by a constant
pressure p=p (0), and s_ and s, are respectively the instantaneous 'an'(i
relaxational parts of it. We shall mean by p=p (Q) the hydrostati'c
pressure when the density is 0, and by p,=p (0,) that at the initial
(static) density Q,, the hydrostatic pressure being supposed to be a function:
of density (and temperature) alone. Then, by definition, ; 51100

so="F0 (7 = o), (1)
where (3, is the static or total compressibility of the fluid, being the
reciprocal of its static bulk modulus. - Let 8., and f3, be respectively the

5 Eckart, C. Phys. Rev. 73 (1948), 68.
6 Liebermanu, L. N, Phys. Rev. 75 (1949), 1415,
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instantaneous and relaxational parts of this compressibility so that
Bo=F. + Brs 2)
S0 = Igoo (P —Po), and s, = «87' (P i Po)-

When the applied pressure varies with the time, the rate of relative
compression is

ds _ dse ds
dt  dt 2 ( dt )vis (3)
By (2), we have
d,s‘,° dp
= i dii ()

It remains to be formulated how the second part, (ds/dt),;,, may be repre-
sented by a coefficient of volume viscosity.

In a viscous fluid in motion, the value of the pressure is, as is well
known, dependent on the orientation of the surface considered. Let
P=— % (ty;+1,,+12,5) be the arithmetic mean of the pressures on any
three mutually perpendicular surface elements at the point considered.
As far as the static part of s is concerned, this mean dynamic pressure,
when constant, is, in effect, to correspond to a static pressure p so that for
a viscous fluid in steady flow we have

so=0o(p — Po)- ‘ ()

When the pressure varies with the time, we may introduce an effective
dynamic pressure p’ =p’ (@) which determines the actual relative compres—
sion accor dmg to

s =00 (p' = po)- , (6)

We shall now define the coefficient of volume viscosity, 7, by the
equalion

e e———
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=sipl
(t;; )m=ﬁﬂ2n 5

As will be seen later, this definition of 7, is in harmony with a naturg
generalization of the classical hydrodynamics. By (5) and (6), (7) ma

be written as

( fl; )vis o 3%0—7—723 :

Substituting (8) and (4) in (3), we arrive at the bulk visco-elastic equatio)

ds dp So—S
dt fe gt Bomz

an equation that has been assumed by Hall.A

h d :
For a constant applied pressure, d}; =0, and the relaxational part of
9) is
s ds v afds —iso

dt Bone ’

whose solution in a form appropriate to the present problem is
s —'sg = (5o &7 s0) exp (— t/Bom2); v (11 )

as may readily be proven by substitution. When the applied pressure is
withdrawn, p=p, so that s, in (10) vanishes and the appropriate solution

38

becomes

5 = Seo X (— t/Bo2)- ' (19 ¢

" The phenomena represented by (11) and (12) are respectively shown by
the curves 4B and CD in Fig. 1. Thus, the relaxation time 7, for this
process, i.e., the time required for s, to reach (1/e)th of its equilibrium
value under a constant p, is seen to be 1

3

g == o 72
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constant b
5# l ' ;
applied 1 withdrawn
‘."?""""""3""
.
55 %
" 1
1 i
t S
‘ m
.t

|

(=}
~

5. ATTENUATION OF SOUND

In an acoustic wave, we may assume
p—po=Ae™, and s=Be"

Substituting in (9) and making use of (1), we have

i ((904, g M&_) (p — po).

1+ iwrs
Hence, the effective coefficient of compressibility for a sound wave is
Bute = B + B/ (1 + 0 0). (13)
Representing the damped plane sound wavé by
s = (Ce=0%) lott-2/v),

we may write

s = Celolt=2/v"), (14)

where the complex velocity is

<
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4 apoa.00
1 + (av/0)? o + v/ o

¥ =

For the practical case (03> v, this is

v* =~ v+ i(ev¥/w)

where v is the real phase velocity and ¢ is the amplitude attenuatio 1
coefficient. A :

The formally undamped wave (14) propagates with a comple
velocity given by the classical expression

5 > .
¥ = [(keff .+ 'g#eff) A Q]E > (16)'.

where k;=1/f. is the complex effective bulk modulus and . the
complex effeciive shear modulus. To find (b, we shall distinguish two-
cases; both, however, lead to practically the same expression for a.

In the case of a gas or a more gas-like liquid, the real shear modulus
may be taken to be zero so that the shearing stress is simply E

as; d

where 7, is the coefficient of shearing viscosity and s;;=3(

2§, 255
: d = Glae ox;
the shearing strain. The operator 7, S thus plays the role of the effec-

tive shearing modulus. For harmonic vibrations in sound waves, the
stress and strain tensors depend on the time through the factor e so that
e is equivalent to multiplication by i®. Hence, we find for a gas or
gas-like liquid

et =T 071 (17)
Substituting (13) and (17) in (16), we find '

o 1 Bbr B SR ol s 0 s By B) ;. 4 3
o oo IO AR (Yey I Ve, 2 ks
& :-[ﬂ%+ﬂ‘i.w2'r§ +‘(ﬁ:+ﬁ&w§wé *3 "”“)]-
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For the practical case of @ 7,«1, this is approximately

1 i Bo = B
V¥ ; ] L__(l__..___‘qz + = 1]1 :
@ 2 =G ) i
Comparing with (15), we get

L= 1/(e B =

and

[

[03)
ov®

=2

(—7]1+§r ) : . (18)

A more solid-like liquid ‘'may be regarded as possessing appreciable
rigidity represented by a shear modulus @, so that the motion is in' part
~ due to elastic displacement, the remaining part being that of viscous flow.
. Then, one readily finds, as first glven by Maxwell, the shearing visco-
elastic equation

Aty + 71 tip (19)
1
from which it follows that when the motion is suddenly stopped, the
shearing stress drops with time exponentially according to
ty; = (ti7)o €= /M%7,

with a time of relaxation given by
7 = m/W.

(19) may be written as

1+t ey (i) 250

so that, followiné Irrenkel, the effebtive shear modulus may be represented
by the operator .

d
o KA
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where 4 is an operator defined by
d
A1+ 0 ) =1
For harmonic vibrations, we then have

Hett = piwr/(4 +iwzy). @ ,:.x]

Substituting (13) and (20) in (16), we find T

Wi gl Bo + B 0?73 Suv’s} (072 (B —F o) frpor L
S (ﬂ§+ﬁsow%:+1+w%f)+‘(ﬂg+ﬂfow2wz+-1+w2rf)]. :

For the practical case of @ 7,< 1 and o 7, K 1, this is approximateljr e

ci i e 9 i
v*’g(—e_o) . 2(9(;)%- (ﬁop’oﬂ "””%’”)‘_- 1l

where s, =1/f,. Comparing with (15), we get, again,

v=1/(0f0)*,
and, again,

4. GENERALIZATION OF CLASSICAL HYDRODYNAMICS

Tisza” has discussed at length how Stokes’ relation in classical
hydrodynamics must be modified in order to embody the effect of bulk i
viscosity. He has also defined the effective dynamic pressure p’ asthe =
pressure that would be produced by an adiabatic compression from the
static density g, to the actually existing density 9. This definition is not
necessary, although it allows a somewhat simplified way of writing the
equation of motion. Fox and Rock®, instead, has simply taken the

7. Tisza, L. Phys. Rev. 71 (1942), 651.
8. Fox, F. E. and Rock, G. D. Phys. Ren 70 (1946), 73.
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hydrostatic pressure p for p’. From the view-point of our visco-elastic
theory this is not permissible, as is also obvious from the fact that even
for an ideal incompressible fluid p” is not the same as the hydrostatic
pressure. It is, therefore, best to leave p’ undefined. We may then
generalize Newton’s law of viscosity by assuming that the excess of stress
over the effective dynamic pressure be proportional to the rate of strain
due to viscous flow. Since the rate of instantaneous strain is, by (4),
proportional to the rate of applied pressure dp/dt, our generalized New-
ton’s law may be written as

._,,Jﬂ’_)_;, 2 (‘“22 e _‘I_P) ) (‘liﬁ&..y LIy

dsyy
—_— e ! -
ty = =7+ O+ 2m) (G2 dt e B &t 20

tog = — p' +3‘(dsn 7 dt)+(l+2m)( 7%—)-#}'(%5%“?,%)’

3 dS]l {2822 i_}_’_ d\fgs o2 d]]
tyg=—pl + A ydt)+l( 1t }/dt)’*'()"*‘g"h)(dt VW)-

Hence, we have

% 2 2
peprme (b 2] To0t 3 (1 ) 2
dp
(““5’71) +5(}'+—’71)7 dt
Comparing with (3), (4), and (7), we have
1;3=l+%731 and oy = —JS;;”—.
Our generalization of Newton'’s law of viscous flow may then be put as

[T]=— {P'+ (Sm—=m) ¥ '”"7‘2‘(”“’—3%} IR B D

where [T7], rate of (pure)
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strain, and unit tensors or dyadics. The force on unit volume duse
stress is the divergence of the stress tensor, which, by (21), is

_vp A*‘(Z) 7]14‘772)vv'v+"]1v20+7]2‘6’mv Z’t) .

Hence, the equation of motion becomes

d , 1 e ol
@—‘—i%=ef— v+ (gm+nz) VV v+ V%0 + 1PV %f—, (22,

where f is the body force per unit mass.

For an acoustic wave propagating in the z-direction, equatlon (22)

disregarding body force, becomes

v, b e
RS A e O

Even in supersonics, the wave length is so long that the product terms of.
3

ov ov o
9% v, s, etc., such as v, ——=, are small compared to the individual
ox ox 4
terms and may be neglected as is usual in acoustic theory. Furthermore,

1 ;
since v,~8&/dt,s= —25/d x,and, by (6),-a-~'l-)—=i o , and also, by
S dx ity Gz ]

neglecting ® 7, in (13),

this equation may be written approximately

925 _ ky 9%s 85 =18 35
5t“~g ax“+ (517 v Mos m)?xgat' (25))

Representing the damped plane sound wave by

5 = C o=@ 7 glot (24:) 7



No. 5. PHENOMENOLOGICAL THEORIES OF BULK VISCOSITY

375

where the complex absorption coefficient is

. W
ll*‘lx-l‘-l-*;e,

and substituting (24) in (23), we have

o g[8 (G m) ]

In the first approximation,
.l 1 L . L
o¥ 2 5 Bo 0 (Bo0)? (g— U +,-%—0':—172) + i (Bo0)F

Comparing with (25), we get, again,

v =1/(of).

and

1 @ (4 [ :
oz=§.__(m3 (—5—771+ ﬂ; 772)
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