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THE FOURIER AND THE NEW POINT DIAGRAM
SYNTHESES IN X-RAY CRYSTALLOGRAPHY
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Department of Physics. National Tsing-Hua University.
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ABSTRACT

A newly developed synthesis of X-ray data for crystal analysis, called the point diagram
synthesis, is compared with the classical Fouriers. The fundamental assumption in the method
s first explained. A correlation matrix of index 10 is then quoted. Some mathematical properties
of the correlation matrices, that is, the absolute convergence, and the A- and u-summation
rules are described and illustrated, The method is next applied in parallel with the Fouriers
to an arbitrary structure along with its two component structures. The crystal NaCl is next
studied, using the actual experimental data. It is shown that on the basis of exactly the
same sexperimental data the in‘ormation given by the two types of syntheses are entirely
different. Conclusions about the method drawn in the previous articles are then discussed in
the light of the new studies and approved once more,

INTRODUCTION

In the past nine years the writer has attempted to find some new way of
interpretation of X-ray data for crystal analysis. As a result, four independent
methods are found which appear possible not only to locate the position of a peak
but also its nature in the mapping of a structure. Two of the methods are limited
to simple structures; for, in the case of complicated structures, the solutions,
though still theorctically applicable, are too complicated to be manageable practi-
cally. The first one called “‘the Improved Algebraic Method’’ was published in
brief account!, and its application to specific example illustrated?. The second
method called ‘‘the Identification Method’’ has not been published yet. The
remaining two methods are closely related to each other and somewhat similar to
the classical Fouriers in their manipuldtion. One of them, which may be called
“‘the Point Diagram Method”’, was outlined in Nature® and also applied to study
actual examples®. The method has been much discussed and given rise to many
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comments®®7:8, some of which reveal that the method has not beeén understood
correctly. It is therefore thought necessary to compare the method with the
classical Fouriers in applying both of them to a real crystal based on the exactly
ldentlcal real experimental data to see if the informations derived from the two
different methods are really different and if the informations derived from the

new synthesis are really much more quantitative than the informations derived .

from the classical Fouriers. Since the actual X-ray data of rocksalt taken by
James and Firth® are very accurate and the Debye temperature factor for the
crystal can be most accurately corrected for, the comparison of the two syntheses
is made on this crystal. Besides this comparison, some of the¢ mathematical
properties of the new synthesis together with other discussions are also presented in
this article. TFor the sake of simplicity the fundamental mathematical theory will
not be related here.

- THE FUNDAMENTAL ASSUMPTION AND EQUATIONS

The fundamental equations of the one-dimensional Fouviers.

What we call here the classical Fourier syntheses in crystal analysis are those
which are based on the direct application of the results of the theory of Fourier
series. In the one-dimensional case these syntheses may be represented by a
general formula of the form,

o(x)= 33 C(h) exp (2miha),

——o0

where ¢(x) represents some kind of density at a point whose coordinate expressed

as a fraction of the unit axial length is x; C(4) are quantities independent of x and .

derived from X-ray intensities indirectly or directly, depending on what type of
Fourier we are dealing with; the other notations have the usnal significances. In
this article only structures possessing centers of symmetry will be considered. The
equation is then reduced to the form

o(x)= 3 C(h) cos hs. "
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‘We shall consider the following four types of Fouriers:
(1) The ordinary Fourier,

o0 .
() =%, F(h) cos 2whx. (1a)
s

o)

(2) The simplified Fourier,

. 0 5s(%) 7;%_ E(k) cos 2, (1b)
where
E()y=Fh)/fh), \ (1b")
— n ”
. f)y=eM. 52 fi(/z)/EIZL (1b")
=1 ==

fi(k) is the atomic structure factor of the ¢-f& atom, Z;, the number of the shell
electrons in the 4-t2 atom, e-M, the Debye-Waller {emperature factor. The
quantity E(4) is formulated somewhat in the way after Patterson!® who, however,
defined f?h) without including the temperature factor. The simplified Fourier is
introduced here in analogy with the simplified Patterson-Fourier shown below
which was first formulated by Patterson.

. (3) The Patterson-Fourier,

%) §
QP(x)TZ F% k) cos 2thx. (1c)
=00

(4) ‘The simplified Patterson-Fourier,

oo .
(%)=, E*(h) cos 2hx. (1d)

¢
PSS &

The fundamental assumption and formula in the new point diagram synthesis

The fundamental assumption upon which the new synthesis is developed is
that in the case of a linear crystal all the atoms lie exclusively on some or all of
those N points (to be called the N reference points) in the unit axial length,
whose coordinates x are zero or multiples of 1/N where N is an even

10, Patterson,Z. Kristallogr. (A}, 80 (1935). 517,
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integer, that is x=u/ N where u is an integer cqual to or smaller than N. The.

assumption is based cn the observation that we can determine the coordinates of
the atoms in a structure always with only a finite accuracy. Thus usually the
coordinates are determined only accurate to the second decimal figure, that is,
x=u/100. On the basis of this assumption we shall, after some mathematical
and physical considerations with the aid of the fundamental identity in Yii L
{denotes Yii’s letter to Nature®), obtain an equation given below for structures

possessing centers of symmetry,

w . .
P,= 2 C(\h\ayh» (2)

h—-o

where P. denotes the number of certain kind of particles at the u~th of the NV
reference points, the coordinate of the u-th reference point being u/N. aup is a
function of the parameters N, 4 and 4 with possible values of 4 ranging irom
0,1,2,.... to (N-1), and values of % ranging from - ,....-3,-2,-1,0,1,2,....to o, the

totality of @y forming a matrix which may be called the “‘correlation matrix of

index N’’. In the detailed mathematical theory we shall show how the matrix
is obtained and with what functional relations it depends on N, u and A. Here we
just need to know it to be a set of known numbers which may be used to correlate,
in the way given by equation (2), the quantities C(%) defined by Egs. (1), (la),
(1b), (1c), or (1d) of the structure in question to obtain a set of numbers P, which
will give us in turn informations useful in the determination of the structure
concerned. It must be born in mind that the numbers P. are.referred to the N
reference points alone, all the other points being assumed free from atoms accord-
ing to our fundamental assumption. Two types of structures will be cbnsidered,
the fundamental equations for them are:

(1) The new synthesis of Fourier structures,

. FPH———:% E(h) Auk. (23)

h=-o

(2) The new synthesis of Patterson structures,

[+ <]
PP=% p2h) au. (2b)
=

- €
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Knowing these fundamental equations in the new syntheses we may now proceed
to see what the correlation matrix aus is.

THE CORRELATION MATRICES

The Correlation matriz of index 10.

So far correlation matrices of N=4, 10, 16 and 52 have been evaluated.
As an illustration the correlation matrix of index 10 is given in Table 1:

Table 1—Values of @us of Index 10

k u=0,10 1,9 2,8 3,7 4,6 5

0 0.1040 0.1920 0.2096 0.1880 0.2200 0.0979
+ 1 0.0960 0.1650 0.0695 -0.0725 -0.1660 -0.0979
+ 2 0.1050 0.0694 -0.1589 -0.1670 0.0415 0.0976
+ 3 0.0940 -0.0726 ~0.1671 -0.1649 0.0791 -0.0969
+ 4 0.1100 -0.1660 0.0415 ~ 0.0793 -0.1360 0.0946
+ 5. 0.0490 -0.0979 0.0977 -0.0970 0.0946,  -0.0496
+ 6 -0.0079 0.0036 0.0166 -0.0129 <0.0229 0.0461
+ 7 0.0040 0.0069 '0.0041 0.0008 -0.0080 -0.0232
+ 8 -0.0025 -0.0044 -0.0013 0.0039 0.0115 0.0172
+ 9 0.0019 .0.0012 -0.0033 0.0050 -0.0001 * -0.0108
+10 -0.0014 0.0029 -0.0037 0.0045 -0.0065 0.0102
+11 0.0011 -0.0022 -0.0021 0.0025 0.0029 -0.0073
+12 -0.0009 -0.0015 -0.0022 0.0006 0.0028 0.0057

where the notation u=0,10 means u=0 or =10 and 2=+ A means k=1 or==—1,

and so on.

Absolute convergence.

1t is seen from Table 1 that a.; are small when 2>>4N=5. The truth of this
character is not confined merely to the correlation matrix of index 10, but holds
for N equal to any even integer. Now in the series on the right hand side of
equation (2), C(k) can never be larger than C(0) and so aux. C(%) becomes very
small as % increases beyond the value $N. Consequently the series mentioned is
convergent so long as N is not indefinitely large. In fact the series is absolutely con-
vergent; the omission of all the terms with absolute values of % larger than }
causes so small an error in the series in the calculation of P. according to
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equation (2) that this error is really negligible in comparison with the errors in
C(h) due to the limited accuracy in the experimental measurement of X-ray
intensities. Actual evidence in supporting this statement will be seen below in
the application of thé method to the study of the crystal NaCl. It may be
interesting to recall that the use of the absolutely convergent series in the new
method is directly in contrast with the use of some divergent series in some of the
classical Fourier methods such as the simplified Patterson-Fourier for x=1
represented by equation (1d).

The h-summation rule. ’

Suppose we have a linear crystal consisting of two electrons, one at the «w-tA
and the other at the (N-0)-¢h reference point. Then E(%)=F(h)=2 cos (2whw/N).
Substituting this into equation (2a) and remembering that P.—=1 when u=w, or
=N - w, and Pu.=0 otherwise, we have, )

/

"o
>, (cos 2who /N) Qur=Ouw, (3)

h=—-w

where Juw=1 when .uy=w or =N=w, and Juw=0 otherwise. To see whether
this summation rule [is true or not in the matrix given above, let us put w=20,

Then we should have '
oo . »
. > am=1 ‘ (3a)
h=-w
and
o0
S dun==0, u7#0 and=1,2,....or 1N. (3b)
h=—=-®

Actual substitution of the values of auy listed in table 1 gives,

12 12

2 @on=1.0008; >, azp=—0.0021;
h=-12 h—=—-12

12 12

T, amn=—0.0044; <7 asp= 0.0061;

=12 A—=-12
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g

}{"2 a— 0.0028; l}“: s 0.0347.

h=-12 h=-12

We see that the first sum is very near to the value unity while all the others are
nearly equal to zero in comparison with unity except the last one which differs
from zero by little more than three per cent referring to unity. Thus the rule is
confirmed within the calculation error.
The yu-summation rule.

There is another rule which is proved to be equally interesting, It may be
deduced in the following way. Suppose we assume another structure whose atoms
are distributed in such a way that we have H(0)=4%, K(1)=FE(2)=KE(3)=-.-=
E(4N)-=0. Then from the definition of E(A) given by equation (2)in Y L., it
can be shown that,

Z {Umk—*—E [(I/ﬂ, (mN+k) +ay,(mN___k)] J :.::()0[;,
=0 =1

where doo==1, and Jo3=0 for 270. The equations may be called the p-sum=
mation rule, the validity of which can be tested in the same way as shown
above for the z-summation rule.

Whether the two rules given above have or have not any more general
mathematical interest we cannot tell without further investigation. (It is
interesting to observe that the A-summation rule is somewhat like a generalized
normality and orthogonality property such as that possessed by the ordinary
orthogonal functions.) Nevertheless. one thiné is certain that they are useful at
least as a different independent method to check up against any mistakes which
might creep into the values of auj during their evaluation. Another application
of the rules is their simultaneous use to localize which @.; got wrong numerical
value in a matrix of duj.

AN ARBITRARY LINEAR CRYSTAL

Now let us make an actual comparison between the classical and the new-
syntheses by studying an arbitrary structure, the study of the actual NaCl will be
followed next. The arbitrary structure to be studied consists of five dimensionless
atoms, the number of electrons belonging to any atom being denoted by Z. The
distribution of atoms at various reference points whose positions are indicated by
u=10x is listed below:
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Table 2— The Fourier Structure

u=10x= 0 L 2 3 4 5 6 7 8 9 10
Z= 6 0 0 7 3 0 3 7 0 0 6

The derived Patterson structure has a distribution XZ_Zg listed below: .

Table 3—The Pattersdn Structure

u=10x= 0 1 2 3 4 5 6 7 8 9 10
2Z,28= 152 84 18 252 170 0 170 252 18 84 152
Pu.= 152 70 19 247 195 0 196 247 19 70 152
From the structure so assumed we obtain the values of E?%(4) given as:
Table 4
h= 0 +*1 +2 43 +4 +5

E'h)= 676 104 119 367.9 30.2 6

We can now make a new synthesis of the derived Patterson structure according to
equation (2b), using the values of E?(k) given in table 4 and the values of the
correlation matrix given in table 1. The resulted values of P, are listed in
table 3, the third row. It isseen that the agreement between (XZ,Zg), the
real distribution, and Py, the distribution obtained by the new synthesis is within.
the error introduced in the experimental measurement of F?(%), though in making
the synthesis, the series on the right hand side of equation (2b) is stopped at the
téerm of maximum %=5=1%N, a fact which supports thc conclusion drawn in the
section of absolute convergence. The classical simplified Patterson-Fourier
according to equation (1d) based on exactly the same E2(h) is plotted in figure 1.
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Fig. 1. The simplitied Patterson-Fourier of an arbitrary linear crystal
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Here the peak at u=1 or x=0.1 is absorbed into the peak at x=0 while the
peaks at x=0.2, 0.3, and 0.4 are grouped together into a big peak; the same is
true for the peaks whose x >>0.5. Thus, the fine details, that is, the distribution
of the atoms in numericdl quantities shown up in the new synthesis, are not
revealed here, the classical simplified Patterson-Fourier synthesis. The contrast
between the classical and the new syntheses can be brought out even clearer, if we
study the other two component structures; one has peaks at x=0 and =1.0 of
strength 152 while the other has peaks at x=0.1 and =0.9 of strength 84. The
peaks at x=0, 0.1, 0.9 and 1.0 in the original Patterson structure, that is, in
the structure shown in table 3 are then the result of superposition of these two
component structures. The synthesis of the first component structure gives the
result in the third row of table 5. The assumed actual structure is indicated in
the second row:

Table 5
= 0 1 2 3 4 S 6 7 8 9 10
== 152 0 0 0 0 0 0 0 0 0 152
P.= 154 -1.8 -3.8 5.2 70 -09 70 5.2 -3.8 -1.8 154

The corresponding simplified Fourier is plotted as curve A in figure 2:

MT
A. The 151 Componenf
J400 B. The znd Com/boaen/
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Fig. 2. The simplified Fouriers of the two component structures
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Sifnilarly wé have table 6 and curve B in figure 2 for. the second component

structure.
Table 6
== 0 1 "2 3 4 5 6 7 8 9 10
Z = 0 84 0 0 0 0 0 0 0 84 0
P.,= -0.8 849 53 -59 44 04 -44 -59 53 849 -0.8

A perusal of tables 3, 5, and 6 will reveal not only to what extent but also for
what reason the new method yields the quantitative detailed informations about
the structures in question as in contrast to the rather vague informations conveyed
by the classical method. It is seen that, both in the classical and the new, the
same E%h) are used; and so if there is any difference between the results of the
two methods, this difference cannot be attributed to anything else except the
difference in the nature of the two methods.

Another point worth demonstrating, is the variation in the classical and in
the new of the numerical value of a peak strength with the variation of the
number of terms employed in the summation of the respective serieson the right
hand side of equations (1d) and (2b). Let us denote by H the maximum % we
choose in the series and do the syntheses for various values of H, from {N upward,
The resulted peak strength 9(0) for the classical and P, for the new are listed in
the second and the third rows of table 7.

Table 7
H= 5 6 7 8 9 10 11 12 00
o(0) = 1529 1480 1252 1260 1276 2628 2645 2653 o
pP,— 152 151 154 154 154 152 152 152 152

We may observe that while P, has no material change for all these H, ¢(0) is
quite indefinite depending upon what H we choose. This reveals what an
indifferent significance is attached to the numerical valuc of ¢ at a peak in the
classical synthesis and the great significance attached to the numerical values of
I’y in the new synthesis. ’

- ~ THE NaCl STRUCTURE

" We may now come to the study of an actual crystal and see to what extent
the approximations involved in the deduction of E(%) from F(4) or the deduction
of E% %) from F?(4) will affect the quantitative nature of informations yielded by

1Y
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the new method. 1In other words, let us see to what extent the usefulness of the
new method will be maintained in the study of an actual crystal. In making
this study, the first step is to transform, in the casc of Fourier structure, the
experimental F(A) into the corresponding E(%). In order to make this transfor-
mation, we have to know the average Fh), which, in turn, involves the
determination of the Debyc-Waller temperature factor for each atom or, if not
possible, its average values for the whole unit cell. This can be obtained
experimentally. In the present case wc may determine this factor from the
Debye-Waller equation using the characteristic temperature 281° of NaCl. The
step for the evaluation of ]—‘Zh) is illustrated in table 8: ;

Table 8§
A _ 0 2 4 6 8 10 12
sinf /A 0 0.177 -0.355 0.533 0.716 0.877 1065
fNat 10.0 8.56 5.88 3.77 2.59 1.99 1.64
fc1“ 18.0 1224 8.57 6.94 5.65 4.50 3.53.
0 0.059 0.236 0.533 0.945 1.474 2.120
(fe—M)Naa-

(feM)q-  18.00 11.80  7.35 493  3.06  1.73 0.897

10.00 8.07 4.65 2.21 1.00  0.456 0.197

1 1.000 0.710  0.393 0.253 0.145 0.078 0.039
F(h00) 112.00 82.60 46.60 27.56 16.16  8.88 4.48
E(k00) 112.00  116.0 118.0 108.0 111.0 1130 115.0

F(h00) given in table 8 is four times James and Firth’s values® because we have
four ‘molecules, in one unit cell according to the theory of space group, whereas
F{ 100) given by James and Firth is only for one molecule. The symbols My,+
and M~ stand for 1.87 (sinf/1)® and 1.21 (sinf/A)? respectively, the two
coustants before the brackets being calculated in the way just mentioned. From
f(%00) and F(%00) we obtain E(400) or briefly E(%) listed in the last row. 1t is
interesting to see that the approximation involved in the derivation of E(4) is
really not bad judging from the fact that all the values of E(k) differ not very far
from the same theoretical value 112. :
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We may now sum up EiA) according to equation (2a) using the correlation

matrix given in table 1, the summation being taken from A= —4 to 54=4. The
Py so obtained are given below:
' Table 9
p= 0 1 2 3 4 5 6 7 8 9 19
2z, = s6 0 0 0 0 S 0 0 0 0 56
Pu= 62.0 -1.6 -3.6 1.0 2.2 55922 1.0 -3.6 -1.6 620

The agreement between Py=62 and P;=55.9 with the theoretical value 37, =
2Z 1+ Zya*) =2(18+10)=56 is obvious. The smallness of the background
is also noticeable. These results are rather remarkable in considering that the
synthesis is made only on the basis of two experimental values, that is,
F(200) and F400). In fact, if we use a correlation matrix of index 4 or 6
one experimental value would be enough, that is, F(200), so far as the makiﬁg of
the synthesis alone is concerned. Again it is anticipated that a new synthicss of
F(/hhh) would be even more interesting; for, then, the two kinds of atoms are
separated from each other; P, and P, would be 4Z;—and 4Zy,+ respectively.
However, we need not make the illustration any more, the result can be expected.
The classical Tourier and the classical idcalized Fourier based on the same
experimental data are plotted in figure 3:

A. The 1devkecd Fearer A
B.The ordinsry Fourier
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Fig. 3. The Fourier and the idealized Fourier of NaCl]

! i
70 82 70 100



¥

THE FOURIER AND THE NEW POINT DIAGRAM SYNTHESES 93.

It is not difficult to see what kind of different informations are revealed in the
classical and in the new when a careful examination is made of table 9 and
tigure 3.

CONCLUSIONS AND DISCUSSIONS

We may now come to discuss the conclusions drawn in Y# L3, and elsewhere®:

Conclusion 1. The new method tells us not only the position but also the

"nature of a peak, whereas the classical Fouriers merely give the position together

with some vague notion of heaviness or lightness of a peak.

Discussion: The correctness of this conclusion can be seen when an examin-
ation is made of tables 3, 5, 6, 9 and figures 1, 2, 3.  Thus, the conclusion holds
true both in the arbitrary as well as in the actual crystal. The applicability of
this conclusion does not depend very much upon whether the structure concerned is
simple or complex, it depends solely on the condition whether the fundamental
assumption mentioned before 1s trué or not in the structure, in other words,
whether the unit axial length has been divided properly or not, that is the N has

been selected correctly or not. :

Conclusion 2. The background in the new synthesis is clearér than that in
the classical. The background in th¢ new synthesis, however, is referred to merely
the N reference points defined before, all the other points in the fundamental
interval being supposed to be free from atoms, in accordance with our fundamental
assumption. ‘

Discussion: It is seen in tables 3, 5, 6, and 9 that, whenever Z'ZaZﬂ or XZ,
is zero theorctically, the corresponding Pu is also very small in comparison with
other Py in the same table, deviating from zero merely in a few per cents, an
amount of probable errors usually occur}ring in X-ray intensity measurements.
Again the conclusion is true for the arbitrary crystal as well as the real crystal
NaCl.

Conclusion 3. There is no fear of interference of peaks. 1f superposition.
of peaks takes place, this superposition will be known from the numerical Py of
the peaks; otherwise they should remain distinct from each other no matter how
close they crowd together. The clause ‘‘no matter how close they crowd

’s

together’” is referred again to the N reference points alone in conformity with the
fundamental assumption. (The writer regrets his forgetting to put this last remark

in Y& L3
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Discussion: The conclusion is best understood in an examination. of the
peaks at u=0and u-:1 in the original Patterson structure shown in table 3 of
the arbitrary crystal. It is seen that the peak at u=0 alone gives rise a
background at u=1in the first component structure shown in table 5and the
peak at u=1 gives rise a background at @==0 in the second component structure
shown in table 6. Both the backgrounds are small in comparison with the peak
values at the respective u in the original Patterson structure, that is, —0.8

compared with 152and —1.8 compared with 84. This means that the peaks at .

tt=0 and p=1 in the original structure do not interfere with 'each other to an
appreciable amount, though they are closest neighbours. As to the question of
superposition, let us consider the peak at =1 in the original Patterson structure.
The peak is due to the superposition of the ends of four interatomic vectors
between two of atom 7 to two of ::Ltom 3, making up the peak strength 7 x 3 x 4=84.
The peak strength revealed By the new synthesis shown in table 2, is 70, some-
what too small in comparison with 84.- 1t istrue that to arrive at the _correét
superposition for the peak solely from the number- 70 is rather a long way.
However, how much this definite numerical c.latum 70 will be of use in actual
structure analysis any experienced X-ray worker may easily be able to realize;
and this 70 is the worst datum in comparison with the other P. in table 3. ’

In spite of all the favourable conclusions drawn above, they become untenable
unless the fundamental assumption is valid exactly or very approximately, that
is to say, the index N is correctly or fairly correctly chosen. . To test whether

this choice has been correct or not, the following three criteria are proposed:

1. To see whether there are in a synthesis of a given index N for the
structure in question, very large negative values of Pn. According to the theory,
#, must be always positive if N has been correctly chosen, no matter whether the
structure is of the type of Patterson or ofthe ordinary Fourier.

2. To make a synthesis of index 2N and see if P. at the equivalent
positions are materially altered or not. 1f N has been chosen correctly, the
alteration must be inappreciable. This test, however, requires the order of an
X-ray spectrum to be so high that its inaximum H must be equal to or greater
than N. ‘

3. If the X-.ray spectra have no enough higher order reflections, we can

still make a synthesis of 2N or even 4N as proposed in a note in Nature*, or even
make a classical Fourier. In all these syntheses, the numerical values  of P. at the

-4
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equivalent points are surely different from those in the original synthesis even N
has been chosen correctly in the original one. However, if N is chosen correctly,
the positions of the peaks will not be materially shifted.

The performance of the preceding processes involves a new kind of trial and
error and so introduces a new type of labour in crystal analysis. This is the
first disadvantage in the new method.

Again, for a somewhat complex structure, N most probably cannot be too
small; from many different considerations the maximum H of a spectrum cannot
probably be smaller than 50 in order to get a useful synthesist. This requirement
is not fulfilled yet by a spectrum taken in the usual way. This situation is not
permanent though, and will very likely be improved by the recent progress in the
technique of weak .intensity measurement such as the method developed by de
Lange, Robertson and Woodward in the analysis of trans-azobenzene!*. Still this
requirement of high order spectra does restrict the usefulness of the method and so
forms the second disadvantage of the method.

The fundamental assumption can be removed, however, and so goes with the
two disadvantages.

11. De Lange, Robertson and Woodward, Proc. Roy. Soc, A, 171 (1939), 398,



