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ABSTRACT

In this paper, as suggested by the classical canonical equations, a new set of
the corresponding relativistic equations is set up. Therefrom a relativistic form of
Heisenberg’s cquation is deduced. The relativistic Hamiltonian system of a particle
according to the tormulation here established has been fully discussed and by following
it, however, Dirac’s cquation appears naturally as a necessary form of relativistic wave
equation for electron in quantum mechanics. The process of taking square root in Dirac’s
theory is seen to have its classical analogy. Finally, some applications of the relativistic
Heisenberg's equation to Dirac’s theory have been discussed and it has thereby been
pointed out that this equation brings some quantitics to being more symmetrical in the
relativity sensc and also some more general than those the non-relativistic equation can
introduce.

1. THE RELATIVISTIC HAMILTONIAN SYSTEM
OF A PARTICLE

It is well acquainted with, in the special theory of relativity, that the motion

of a particle can be described by the canonical equations,

dxi oH dpi oH .
dxi . O api o1 =1, 2,3 1
il opi di v, oLy (D
" with the Hamiltonian function
Ii-':fl[."/”’lvuﬂc2 + f))ﬂ + f’zg + {)32 - 7’”062""‘ I’V(xl » Xa, xa)y (2)

if the particle moves in a ficld of force with potential energy function W(x;, xa, %3).

In equations (1) ths quantity H is generally understood as the energy of the
éonservative system (the particle in a conservative ficld) and thus constitutes only
the fourth component of a 4-vector, namely, the encrgy-momentum vector accord-
ing. to the special theory of relativity, so also does the time ¢ (in the form ict)
occurring in these equations. Therefore the equations (1) are not themselves relativ-

istically invariant. They are invariant only in the classical mechanics. Moreover,
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with eqs. (1) and (2), the relation corresponding to the law of conservation of

energy cannot be obtained. With these relativistical asymmctries we are led to a

more symmetrical relativistical form of the canonical equations analogous to egs.
@,

dip 0% dpe 0K (p1,9,3,4), (3)
dr apF ar ax,.,

where d7 (7 being called the proper time) is defined by

4
cdri= —:der‘, x/‘ = (x,, 2, ict),

and ¥ is expected to be a relativistic scalar.

In the case of a particle, however, as will soon be shown, we have

Y= —C‘/—'——Z::Pf"' | (4)

.

Al

if the particle is free, where ;bp is, according to the special theory of relativity,

the encrgy-momentum-vector (pz, py, Pz, zW) and
¢

%:—cl/—ﬁl(p/,, —j- 4,7 (5)

if it is charged (of charge ¢) and moves'in an electromagnetic field defined by the

4-potential AP == (Ax, Ay, Az, 19).

(a) General constancy of ¥:

# is in general a function of x, and pp , thus by eqgs. 3),

=3 (2 D Pp ot ‘”’fu)_ ot 0% _o% o%)_,
d%p AT Gﬁf; at 1 \Gxp ap,, apl" ox N
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ot
. a4 _o.
’ dt
Hence 4 is a constant of motion with respect to cvery system, and since ¥ is #

scalar, we have

~

% = constapt,

this constant being independent of coordinate sy<tems.

Therefore, if a dynamical system can be associated with such a function % and
its motion described by egs. (3), the function % must be a constant independent of
coordinate systems. )

In the case of a particle, we may put
Y= —myc?,

completely irrespective of the condition of the particle, where m,, as will later be '
shown, may be understood as the rest mass of the particle, and ¢ is the light speed

in vacuum.

() The equati’ons of motion of a particle (proof of correctness of the above assumed
Hamiltonian system):

For a charged particle moving in an electromagnetic field,

#= —6’/“2%:(?# :%AF Jra= e, (6),

as has already been discussed in (a); and from eqgs. (3),

““p _ Y% 1 —¢

d‘[ —6———pfn ——-;n—n—(i’,,, CAF' )
or

W o 7

PP, =iy md,T_+7AP (F=1,2,3,4), (7)
and

Pp oy . O %, (8)

“dt | 6xs ¢ 0x, dr

T Oxr c xf.,
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Combining (7) and (8), we have

d o _‘_( B4y _ 04p | dxy (F=1,223
at\y1=g dt bx, / 4t Felzd
- »
84, 04
~ ~ P
F_ = —F
Putting P Cx/,. e

we have then
(Fes, Fyy, Fyg) == (Hx, Hy, Hz)
(Frg, Fog, Fy)=14(Ex Ky E:),
Thus egs. (9) become

dx. = o
a(_ m ’):‘2«?+i" =1, 2,3
ai (p/ 1—p at ali+ Lo xH)y o i=1,2,3)

and

f () =)

for p=4.

3, 4).

(9)

(10)

(n

Here cqs. (10) represent the relativistic equations of motion of a particle in an

electromagnetic field, and eq. (11) means, however, the law of conservation of.

‘energy.

o is oW obviously the rest mass of the particle.

(¢} The Einstein’s energy-momentum velalion:*

The equation (6) gives, when squared out,

9

;n 2,2 < ( ¢ 4
vl zl: ﬁf“ ¢ )
or, explicitly,

(W——e*))

c?

-~ MA ) 4 mge?.

This is Einstein’s relativistic energy-inomentum relation for a particle.

{12)
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2. DIRAC’S EQUATION AS NATURALLY A NECESSARY FORM
OF RELATIVISTIC WAVE EQUATION FOR ELECTRON

For the motion of an electron in an electromagnetic ficld, as classically

described by egs. (3) and (5), the wave equation is naturally of the form

) —;zl:(p/& — f A,L )ﬁb;mocyf. (13)

It may here be quite reasonable to carry out the square root by putting

(4
~£a ),
¢ l‘)

where

ﬁ/x ﬁ‘r _;.ﬁv ﬁ/" =2 6’“’ (;t, v=1, 2, 3, 4).

{4 ¢ . 3
J ( —~ A4 VY+imacr¥=0, . (14)
b P ) J _
and for a free particle,
) | .
():‘:,sﬁ Py +i c) $=0. (15)
With the ordinary quantum-mechanical substitutions,
po=E B gy,
s H b‘x/,

egs. (14) and (15) are the Dirac’s equations for the clectron,
In its explicit form, eq. (15) reads
e, L My,
H

/‘ox," %
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with its conjugate equation’,
»0%p — M40,
L 0xp I %

where

b= "“J"‘ﬁ;-
The operator Y= —ic%:ﬁ’h ({)/‘ ——E.AP ) is obviously the rest-mass operator,
) 1 c .

Wwhich has arbitrary eigenvaluc in {lat space-time according to the special theory
of relativity. The problem of its quantization with reference to various curved

space-time has been discussed by Podolsky and Branson?®.

3. THE RELATIVISTIC HEISENBERG’S EQUATION

1t is generally true, that, in non-commutative matrix algebra, if f is a function
of xpand p,, :

G o Of
Foe e ==L,

o= O
ﬁ({)zf [P0 Y. (16)

For classical Hamiltonian mechanics, egs. {1) are valid, (with /=1, 2, 3 in thecasa’
of a particle); thus, by comparing them with egs. (16) we have
dx; 7

o =7 \Ho—uh=[H, %), °

%»z ;{le—p,,H):[H, pils

It may easily be proved, that. if P is any dynamical variable and is a function of

x; and ¢, but not of time ¢ explicitly,

1. W. Pauli, Hand. d. Physik, Band XXIV/I, 2te. Autl. p. 220.
2. B. Podolsky and H. Branson, Phys. Rev., 57, (1940), 494.

‘
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dp
-2 =[H, P].
B (41, P)

This is the ordinary non-relativistic Heisenberg’s equation in quantum mechanics.
1n the case of a rclativistic dynamical system, however, eqs. (3) are in general

vdlid, thus, by comparing them with eqs. (16), wé have
dx,. . 1 _ o
— ’ir(% Xp~—Xp %)*[%: xﬁ]-

D= S b tr ) <[ 1) ‘

(p=1, 2, 3, 4 in thecasc of a particle), and, similarly, if @ is a dynamical vari-
able of the system considercd and is a function of Zp and pa, A

49 14, 1. (17)

dr

which is the relativistic form of Heisenberg’s equation.
1t is obvious, by this equation, that the relativistic scalar % is a constant of

motion of the dynamical system considered also in the sense of quantum mechanics.
4. SOME APPLICATIONS OF TIIE RELATIVISTIC HEISENBERG’Sﬁ
EQUATION TO DIRAC'S THEORY OF ELECTRON

Up to the present, Dirac’s cquation for electron serves as the only relativistic
wave equation in quantum mechanics. 1t would thus be ‘expected that some app-
lications of the relativistic Heisenberg’s equation may only be found in Dirac’s
theory. It will be seen in the following discussions that this equation will bring
some quantities to being more symmetrical in the sense of relativity and also some

more generat than those the non-relativistic equation can give.

(@) Velocity-vector operator:

For an electron moving in an electromagnetic field

Y=—cf ‘“ﬁ(ﬂf"“—zAr:”'
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and in Dirac’s theory.

4
y —ic?pr.(p,.~-;~A,.,). (18)
Thus. by eq. (17),
By (Y, wy)=—icpy (r=1,2,3,4). (19)
ar
The mean of it is }
N dxlf |L-— N (i! 20
4,__111' 7“‘_"1'64)ﬁ7 e ( )

which is identical with that obtained ordinarily.
By considering the relativistic transformation properties of Dirac’s equation,
both (19) and (20) are 4-vectors, since g, and ¢ transform respectively as a 4-

vector and a scalars.

Eq. (19) may also be written,

1 dx,,. .
—_— P =g v=1,2,3,4),
V1—-gt  dt toby | '
the fourth component of which gives,

“ic

Vicp ik

dt

or,
. 1
ﬂt'— ]7/2:——1—§32 .
Thus, ' A% i Bedr=—car (k=1,2,3),

where @,=73;3,. This is just the velocity eperator obtained directly from the

non-relativistic Heisenberg’s equation.

5. W. Pauli, Hand. d. Physik, Band XXIV/I, 2te. Aufl. p. 221,
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The 4-velocity in Dirac’s theoryrhas already becn discussed and is given by
eq. (20), i.e.,

Uxav s ( ‘Zx‘ ) = —ichI b= —clra i, etc.,
4 av

LU =ic ( ) = —ich3 i =icl+ip,
ay ar v

we obtain therefrom the three-dimensional velocity components,

dx _. f dx ,f’/( dt ) vra,y
== T / = ¢ _T1T  ctc
x0T dt dr )w/ dt )y, LA

These relations arc identical with those obtained ordinarily®.

() The motion of a frec electron. Oscillatory motion:

The velocity operator is already obtained and is given by,

d"; —ic3, (v=1,2, 3, 4),

thus, the acceleration operator follows as

Now,

and

then,

diy _ . ddy
d*t ar

d3 5
ik Z‘; :Bv%_%ﬂv{,

o8+ W3y =—2icp,,

i ‘%’-_-23,,1{4— Zepy,  (v=1,2,3,4):

4.

E. L. Hill & R. Landshoff, Rev. Mod. Phys., 10, (1938) 115.

(21)
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By a similar calculation, we have

a3 aj
% G0 9 Giv gy
: d? ar

hence,

o () (). e

Substituting (22) into (21), we have

By =—zo/),’lﬂ“‘+z~ (‘””) ex (~~ WT) %

hence,

Ay oty = —cp i o (d?w) exp (———%1) %1 (23)
The first term on the right of eq. (23) means the ordinarily observed velocity,
since,

’

_c- /f—l—~6215 1 = f)v

— 11302 Wy

while the sccond term is called the oscillatory motion owing to the occurance of

the exponential {actor. The frequency of oscillation is given by,

Vs :gch,/l a2 2’”"0 VI=F,
hence, -
h
zmocz=-r/——ﬂl{iéf, | (24)

the energy difference between positive and negative energy levels (2mqc?) may
therefore be measured by the frequency of the oscillatory motion according to the
relation (24).
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The results obtained with the help of the non-relativistic Heisenberg’s equa-
tion have some deviations from those discussed here®.  But no decision can here be

-

made, since the motion is non-observable.

(¢) Law of conservation of total angulay momenlum. The spin lensor.

For electrons moving in a 4-dimensional central ficld defined by

Ady=Ay=Ay=0, A, =4,(s), (ds7=20 dtp),

the relativistic Hamiltonian function is

4
% = - 7'612;?[’«15,‘“'_"’6[?4144'

Now defining

Mupy=xppy—xppp  (p,v=1,2,3,4), ' (25)

we have, since, by a very simple calculation, 4,(s) commutes with both x,

dM:P,, =[Y%, Mpy)= —ic (3ppy—3ppp)- (26)

The three spatial components of the tensor (i.c. My, My, M,,) are generally under-
stood as the components of orbital angular momentum of the electron.

By eq. (26) the orbital angular momentum is not a constant of motion, we
can thus cximct that the total angular momentum should be composed of, apart
from the orbital one, also anothcr component. ‘

Tet us come to the tensor ix3,. The time variation of it is given by,
d y 2e 5
E(sgf*tqv):[%: gﬂf?v] = _z(ﬁﬁi’v“‘:gvﬁr)v (27)
hence, by combining eqs. (26) and (27},

d %
a7 M= 1280 =0."

5. P. A. M. Dirac, The Principles of Quantum Mechanics, 2nd, ed., p. 260.
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or,

d oo -
E—t(Mﬁv—immi],):o. {(p, v=1,2,3,4)

Thus the tensor Mpv-%i‘?‘pﬂv is a constant of motion, and is called the total an-

gular momentum of the electron. The term —%z‘ﬂpﬁv is generally called the spin

angular momentum of it.

By means of the ordinary non-relativistic Heisenberg’s equation, only the
three spatial components of orbital and spin angular momentum are exhibited.
This is obviously not symmetrical in the sense of relativity®.

This law of conservation of total angular momentum is true, of course, also in

the case of a free electron.

~

6, P. A.M. Dirac, The Principles of Quanium Mechﬁm’cs, 2nd. ed., p. 264.




