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THE LAMINAR MIXING MOTION OF TWO
INCOMPRESSIBLE GASES
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ABSTRACT

Equations determining the velocity and density distributions within the mixing region
of twa incompressible gases with ditferent densities are set up, their temperatures Deing
assumed to be the same.  Tor incompressible mixing the total number of gas molecules per unit
volume is constant, although the density of the gaseous mixture varies from point to point duc to
diffusion of matter. As an illustration we consider the plane jet and steady motion. The boundary
layer method of approximation can still be applied. The boundary of the jet is shown to be the
same as that for one fluid. The solution of the problem then depends upon the numerical value of
the coctiicient of viscosity of the mixture which is a tunction of the number ot molecules of each
constituent gas in the unit volume. The present metbod of investigation is applicable to the
cylindrical and halt jets and also to the case where the two gases are at different temperatures,

1. EQUATIONS OIF MOTION

Le't my and mp be the molecular masses of the two gases whose mixing
‘motion is under investigation. Denote their numbers of molecules per unit volume
by 1, and 5, respectively. If the motion of the two gases were incompressible,
the total number s of the gas molecules in a unit volume which is defined by

7 =90y + g » (1.1

is a constant.

The density ¢ of the gaseous. mixture is the sum
s ‘
0 == My Mty + 299105 (1.2)
For their mean mass velocity »; we have the definition
QU = MMy Mg THglsi, ' (1.3)
li= 1,2,3)

where v;; and v,; are the velocities of the two component gases. We use carfesian.
tensors and the summation convention for the Latin letters throughout the paper.
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The equations of motion determining »; are given by

ov; ovi ]
IO . 0y — T (. .
or Ty, Tk, i (1.4
in which the stress tensor (71.]. for laminar motion is known to be ¢
ov; ov; 2
Y TN _ 2 dvp .
045 == p‘)ij + u (axj + o%; )— 3 It Bx/;'d{] . (1.5)

Substituting expression (I.5) into Eq. (1.4), we find

o I .y AN
gy 00 = 0Py P27, 000) |22 (00 (re
at % 9x;  oxjil \gx; ox;/a 39x,\ 9y,

Tor the present discussion we disregard the boly force acting upon the fluid and

assume the temperature of the two gases to be the same.

2. EQUATIONS OF DITFFUSION OF MATTER

The equation of continuity of the two constituent gases can be summarized in
the form,

i 9 - 7
o (W, ) 11“771“71,,].3 =0 (2.0

éx'}

(v=1, 2; « not summed)

We introduce the velocity difference u«,; between the velocity of one component

wi

gas and the mean mass velocity v; by the relation

H(U‘ ::vuf - 'Ui . (2'2)
Obviously on account of the definition of »; according to Eq. (1.3), we have

Nty 14y + BaWilgtse; =0, (2.3)

Then in terms ot »; and #;, the equation of continuity (2.1) becomes
) . o .
a ’na.mu. )+ ‘a"“”’lwmuvj) + "_"Tl ”umu.uai):o~ (24)

“The sum of the above two equations yiclds the equations of continuity for the

mixture
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a0 9
at 8x1.

(gvj)zo. (2.5)
The velocity of diffusion, #:; —ua;, of the two gases has been shown to bet

u u %2
= g == -
1i i Ttz

{ Dypdy; + Dy =% log T3, (2.6)
axz

where D, is the coefficient of diffusion, ). the coefficient of thermal diffusion
and T is the temperature. The vector dy; stands for the expression,

0p _mny mythg (Fhi — Fai). (2.7)

=G M s
0%i op

“i= e n ¥ ngp

(911g —my

Here p is the pressure of the gaseous mixture as before and F; and F; are the
body forces acting upon the two gases. In the application to follow we shall
ignore both the second and third terms on the right hand side of the above equa-
oion. Due to the relations (2.3) and (2.6) and neglecting thermal diffusion, we
tbtain '

;

Uy = T MMt == ':) mamy Dyg dy;. (2.8)
The equations of continuity (2.4) then bécome
. 0 - 9 n? o mn
T (\ oy +— «MV.) = T’”'“{ — ‘,__a}
S5 mam ) dxj(n m v]) axj o g Dys rrral (2.9)

The coefficient of viscosity ¢ for a gaseous mixture is also known?. Then we
have five scalar equations (1.6) and (2.9) for the six functions v, n, and p.  The
sixth equation is the adiabatic equation of state for gases. The condition of
incompressibility is only consistent with this equation, if the velocity of the
gaseous mixture were small, ' :

1. S. Chapman and T.G. Cowling, The mathematical theory of non-uniform gases,
Cambridge (1939), 143. .

2. Chapman and Cowling, loc. cit,, 167, 230; J.H. Jeans, An {utroduction io the kinetic

_ theory of gases, Cambridge (1940}, 183.
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3. STEADY TWO-DIMENSIONAL MOTION: THE PLANE JET

Choose the positive x-axis to be the axis of the jet and the z-axis coinciding
with the slit of the jet out of which the gas with density ¢, flows into the gas of

? density g, at rest; the y-axis is taken perpendicular to the jet. Let » and v
represent the x and y components of the fluid velocity respectively. From
symmetry consideration the z-component of the velocity is zero. Let the motion

" be steady. In order to satisfy the equation of continuity for the gaseous

' mixture (2.5) which now becomes

) 0 7
- w)+  (gv)=0, (3.
oz @ ay@)," 3.1)
we introduce a stream function ¥ and put =% and » equal to the expressions,
ou ou
gu:_a_);_, gty::—-..._‘__ax . (3.2)
Next apply the condition of dynamical similarity to the flow in the mixing
region downstream by assuming that 1 is a function of the type,

Y=x"Fo); n=y/x, (3.3)
where 7 and s are two constants to be determined and that all the other scalar
functions p, ¢, 7, and n, are functions of »; (mly.. Since we arc investigating the
region at great distances x from the orifice of the jet, we onlv have to use the

_ x-component of the equations ol motion (1.6 and one equation of continuity (2.9),

3 in the following form respectively:

du du 7 ( ou ) )
U A QU — e T i e 3.4
e Y T\ ey (3.6
»
0 7 o (n D114
. —— (mpgt) +—— (ymgv)= —Z— | —mymg Dyg——"— (3.5
ax( § 34401 ) ay 1774 d.y o 17702 12 d;\’ . ( )

In Eqg. (3.5) we have adopted the coudition of incompressibility #=constant.
From Lq. (3.4) we obtain, Dy integration, .the ratc J/ at which the
momentum of {luid flows across a scction of the jet per unit height must be the

same for all sections downstream, namcly,
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w0
M=2 (0 u?dy=constant. (3.6)

Substituting ¥ from Eq. (3.3) into (3.2),‘ we find
u=x""F /o, v=x"" 1 {—rFt+snF)/¢. ‘ (3.7)
Condition (3.6) then yields the relation, ‘
2y —s=0, (3.8)

1f % and v from Eq. (3.7) are put into the equation of motion (3.4), we obtain

another relation betwee 7 and s,
r+s=1. (3.9)
‘The two equations (3.8) and_(3.9) determine » and s to be

- =2
= =% (3.10)

This result remains the same as in the ordinary theory of spread of jet of one

fluid. The equation of motion itself becomes

1 d FF d[ a 1;, (3.11)

3y e, anlan

Eq. (3.9) for the exponents » and s can also be obtained from the equation

.

of continuity (3.5) which after cancelling out the common factor then becomes

(3.12)

The boundary conditions for the equations (3.11) and (3.12) are given
below:

F=~£}—(F'/Q):O, 1 =0,/my=n, n;=0, when 1=0;
F'=0, n,=0, ng=04/my=n, when n=o0. (3.13)

Under the above conditions Eq. (3.11) can be integrated once, yielding the result,

X
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The above method and the condition of dynamical similarity can be applied
to cylindrical and half jets. If one of the gases is at higher temperature, we have

1
! to take the equation of heat transfer® into consideration, For stéady motion the
temperature will be a function of the variable 1 alone. Here further complication
arises in the calculation due to the fact that both the coefficients of viscosity of
* ,  the component gases will depend upon the temperature.
The author wishes to thank Professor J.S. Wang for consultations on the
correct form of the equation of diffusion used in the present paper.
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-

3. S. Goldstein, Modern developmenis in fluid dynamics, Oxiord (1938), II, 606, Eq. 12,



