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Fig. 1. Geometry of poloidal cross section and feedback con-
trol in ITER.
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ficient x, = 1.5, growth rate of resistive wall mode with
varying equilibrium pressure scaling factor versus feedback
gains for upper and lower sets of active coils.
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Fig. 10. Without plasma flow and with parallel viscous coef-
ficient x, = 1.5, growth rate of resistive wall mode with
varying equilibrium pressure scaling factor versus feedback

gains for all three sets of active coils.
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Fig. 11. With plasma flow 29/, = 0.002 and parallel vis-
cous coefficient k, = 1.5, growth rate of resistive wall
mode with varying equilibrium pressure scaling factor
versus feedback gains for middle sets of active coils.
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Numerical study of effect of plasma rotation and feedback
control on resistive wall mode in ITER"
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Abstract

In tokamak plasmas, the resistive wall mode is a very important magnetohydrodynamic instability, and its
time scale is on the order of millisecond. For the advanced tokamaks with long-pulse and steady-state operation,
the resistive wall mode limits the operating parameter space (the discharge time and the radio of the plasma
pressure to the magnetic pressure) of the fusion devices so that it affects the economic benefits. Therefore, it is
very important to study the stability of the resistive wall modes in tokamaks. In this work, the influences of the
plasma rotations and the feedback controls on the resistive wall modes are studied numerically using MARS
code for an ITER 9 MA equilibrium designed for the advanced steady-state scenario. In the equilibrium, the
profile of the safety factor has a weak negative magnetic shear in the core region. The safety factor is qo = 2.44
on the magnetic axis and g, = 7.13 on the plasma boundary. And, the minimum safety factor gmm is 1.60. The
structure of this kind of weakly negative magnetic shear can generate higher radio of the plasma pressure to the
magnetic pressure and it is the important feature of the advanced steady-state scenario. Using MARS code, for
two cases: without wall and with ideal wall, the results of growth rates of the external kink modes for different
values of Gn are obtained. The limit value of AX™! is 2.49 for the case without wall, and the limit value of
B is 3.48 for the case with ideal wall. Then, a parameter Cp = (B — BY™") / (B — g™ is defined.
The research results in this work show that with the plasma pressure scaling factor Cs = 0.7 and plasma
rotation frequency Qo = 1.1%.4 , the resistive wall modes can be completely stabilized without feedback control.
And, with the plasma pressure scaling factor Cs = 0.7 and the feedback gain |G| = 0.6, only plasma rotation
with the frequency Qo = 0.2%Q4 can stabilize the resistive wall modes. Therefore, a faster plasma rotation is
required to stabilize the resistive wall modes by the plasma flow alone. The synergetic effects of the feedback
and the toroidal plasma flow on the stability of the RWM can reduce plasma rotation threshold, which satisfies
the requirements for the operation of the advanced tokamaks. The conclusion of this work has a certain

reference for the engineering design and the operation of CFETR.

Keywords: resistive wall mode, plasma flow, magnetic feedback
PACS: 52.30.Cv, 52.35.Py, 52.55.Fa DOI: 10.7498/aps.70.20201391
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