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sion process (including Nernst effect).
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Evolution characteristic of axial magnetic field and Nernst
effect in magnetized liner inertial fusion’
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Abstract

Axial magnetic field is one of the main parameters of magnetized liner inertial fusion (MagLIF), which is
greatly different from other traditional inertial confinement fusion configurations. The introduce of axial
magnetic field dramatically increases energy deposit efficiency of alpha particles, when initial B, increases from 0
to 30 T, the ratio of deposited alpha energy rises from 7% to 53%. In the MagLIF process, the evolvement of
magnetic flux in fuel can be roughly divided into three main stages: undisturbed, oscillation, and equilibrium.
The distributions and evolution characteristic of axial magnetic field are both determined by the liner
conductivity, fuel conductivity, and the fluid dynamics. The pressure imbalance between fuel and liner, caused
by laser injection, is the source of fluid oscillation, which is an intrinsic disadvantage of laser preheating
method. This fluid oscillation does not lead the magnetic flux to decrease monotonically in the fuel during
implosion process, but oscillate repeatedly, even increase in a short time. Nernst effect plays a negative role in
MagLIF process. As initial axial magnetic field decreases from 30 to 20 to 10 T, the Nernst effect causes
magnetic flux loss to increase from 28% to 44% to 73% correspondingly, and the deposited alpha energy ratio
drops from 44% to 27% to 4% respectively. So the initial magnetic field is supposed to be moderately high. The
radial distribution of temperature in fuel should be as uniform as possible after preheating, which is helpful in
reducing the influence of Nernst effect. Compared with Nernst effect, the end loss effect is much responsible for
rapid drawdown of fusion yield. A large number of physical images are acquired and summarized through this
work, which are helpful in understanding the process of magnetic flux compression and diffusion in MagLIF
process. The simulation can act as a powerful tool and the simulation results can serve as a useful guidance for

the future experimental designs.

Keywords: MagLIF, axial magnetic field, Nernst effect
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