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本文针对激光雷达等三维传感应用, 设计并制备了 905 nm波长的高功率密度 5结级联垂直腔面发射激

光器 (vertical cavity surface emitting laser, VCSEL). 制备的 5结级联 VCSEL单管 (氧化孔径 8 µm)的功率转

换效率高达 55.2%; 其最大斜率效率为 5.4 W/A, 约为相同孔径单结 VCSEL的 5倍. 窄脉冲条件下 (脉冲宽度

为 5.4 ns, 占空比 0.019%), 5结级联 19单元 VCSEL阵列 (单元孔径 20 µm)的峰值输出功率达到 58.3 W, 对

应的峰值功率密度高达 1.62 kW/mm2. 对不同孔径器件 (8—20 µm)的光电特性进行了测试和分析. 结果显

示, 这些器件的最大斜率效率均大于 5.4 W/A, 最大功率转换效率均大于 54%. 这些高性能 VCSEL器件可作

为激光雷达等三维传感应用的理想光源.
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1   引　言

近年来, 三维 (three dimensional, 3D)传感技术

在消费电子、医疗、工业等领域的应用越来越重要 [1].

传统的图像传感技术依赖环境光, 在昏暗的环境下

和光束直接照射的情况下性能较差. 3D传感技术

不仅可以克服环境光的干扰, 而且能够采集深度信

息, 实现环境分析, 具有更高的安全性和准确性 [2].

因此, 3D传感技术已经被广泛应用到人脸识别、

激光雷达、机器人等诸多应用场景.

在 3D传感技术中, 红外光源作为光发射器, 是

必不可少的元件. 常用的红外光源主要包括红外发

光二极管 (infrared light emitting diode, IR LED)[3],

半导体边发射激光器 (edge emitting laser, EEL)[4]

和垂直腔面发射激光器 (vertical  cavity  surface

emitting laser, VCSEL)[5]. 由于 IR LED发射的是

非相干光 , 其发散角较大 , 且光谱较宽 (约 30—

40 nm), 与之匹配的滤波器带宽较大, 导致大量

环境光进入到探测器中, 造成信噪比降低. 与 IR

LED相比, EEL和 VCSEL都是相干光源, 具有较

窄的光谱 (大约几个 nm), 从而可以获得较高的信

噪比. 相对于传统的单结低功率 VCSEL, EEL在

功率转换效率 (power conversion efficiency, PCE)、

人眼安全、以及远程测距等方面更有优势, 是目前

激光雷达的主流光源. 但是, EEL的制备和封装工

艺较为复杂, 且无法在片测试, 制备成本较高. 与

EEL平行于衬底出光不同, VCSEL垂直于衬底出

光, 不仅可以实现在片测试, 而且可以容易集成二

维阵列, 通过控制阵列单元数目就可以实现出光功

率的缩放, 对优化输出功率提供了很大的灵活性.

此外, VCSEL还具有高可靠性、低制造成本、圆形

光斑、温度稳定性高等优势. 因此, VCSEL越来越

受重视, 并正在逐渐成为激光雷达等 3D传感应用

的首选光源 [6−11].

然而 , 由于传统 VCSEL的增益区域较短 ,

VCSEL单管的输出功率通常小于 EEL单管的输
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出功率. 在许多 3D传感应用中, 特别是中远程激

光雷达, 高峰值脉冲功率、高功率密度和高功率转

换效率是对光源的基本要求. 通常, 将 VCSEL单

管的出光孔径增大, 或将多个 VCSEL单管集成到

一个阵列中, 通过增加阵列发光单元的数目, 来提

高输出功率 [12]. 但这些方法会增大 VCSEL器件的

发光面积, 不仅会降低光功率密度, 且会对后期的

光束准直带来困难.

相比于传统的单结 VCSEL器件 , 多结级联

VCSEL在外延生长过程中, 将多个有源区在同一

个谐振腔内通过隧道结串联起来, 从而可以获得

较大的增益 [13]. 在不增加芯片面积的情况下, 多结

级联 VCSEL的光输出功率相对于同孔径单结

VCSEL的输出功率呈倍数提升, 不仅可以获得较

高的功率密度, 而且能够大大地提高 VCSEL器件

的 PCE. 此外, 增益的提高可以降低多结 VCSEL

的工作电流, 从而减小驱动电路的功耗和成本, 也

可以实现电压和电流的折中优化以提高驱动电路

的兼容性.

目前, 多结级联技术已广泛应用在边发射半导

体激光器中. Muller等 [14] 于 2007年提出了激射波

长为 940 nm的 3结级联激光器 , 在脉冲电流下

(脉冲宽度 100 µs, 占空比 1%)得到的最大输出功

率为 615 W, 斜率效率为 3.38 W/A. Boucher等 [15]

于 2009年提出了 1550 nm长波长的 3结级联激

光器 , 峰值输出功率大于 37 W, 斜率效率是单

结激光器的 2.5倍. 多结级联 VCSEL的相关研究

主要集中在 20世纪末和 21世纪初. Kotaki等 [16]

在 1984年最先提出了波长 1.22 µm的双结级联

VCSEL, 其阈值电流相比于单结器件减小了 1.4—

2.5倍. Schmid等 [17] 于 1998年在多结级联VCSEL

中实现了大于 100%的微分量子效率. 随后, 该课

题组在 2001年实现了 3结级联 VCSEL, 在 9 mA

的电流下得到 7.2 mW的输出功率, 微分量子效率

达到 130%, 功率转换效率为 16%  [18].  Kim等 [19]

开展了关于 1.55 µm的多结级联 VCSEL的研究,

设计的 3结 VCSEL在脉冲条件下实现了大于

100%的微分量子效率. 近期, 本课题组研制了双

结级联 905 nm VCSEL, 斜率效率 2.27 W/A, 接

近单结 VCSEL的 2倍 [20]. 如今, 随着中远程激光

雷达等应用对 VCSEL器件提出了更高的功率需

求, 许多 VCSEL制造商如 Lumentum、Osram等

也加大了多结级联 VCSEL的研发力度.

本文针对激光雷达等 3D传感应用, 设计并制

备了 905 nm波长的高功率密度 5结级联 VCSEL

器件, 并对多结 VCSEL的设计、器件结构和输出

特性进行了详细的分析和讨论. 

2   器件设计和制备

本文设计的 5结级联 VCSEL器件的结构示

意图如图 1(a)所示, 由实际器件图中的 A-A' 方向

截取得到. 采用金属有机物化学气相沉积 (metal-

organic  chemical  vapor  deposition,  MOCVD)首

先在 GaAs衬底上生长 40对 N型 Al0.12Ga0.88As/

Al0.9Ga0.1As分布布拉格反射镜 (N type distribu-

ted Bragg reflectors, N-DBRs). 接着, 在 N-DBRs

上方外延生长 5个有源区, 每个有源区包含 3对

6 nm厚的 In0.12Ga0.88As量子阱层和 8 nm厚的

Al0.3Ga0.7As势垒层. 有源区之间通过厚度为 25 nm
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图 1    (a) 5结级联 VCSEL的结构示意图, 插图为制备得到的实际器件; (b) 驻波场中量子阱和隧道结的位置示意图

Fig. 1. (a) Schematic diagram of five-junction cascade VCSEL structure, the inset is the top view of a fabricated device; (b) posi-

tion diagram of quantum well and tunnel junction in standing wave. 
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的重掺杂 GaAs隧道结连接起来. 需要注意的是,

由于隧道结掺杂浓度很高, 为了减小隧道结的光吸

收损耗, 需要将隧道结置于驻波场的波节上; 而为

了增大光增益, 需要将量子阱放置在驻波场的波腹

处, 如图 1(b)所示. 每个有源区上方均放置一层

Al0.98Ga0.02As高铝组分层, 利用湿法氧化将其外

围氧化为绝缘的 AlOx, 就可以将每个有源区的注

入电流限制在氧化孔内, 从而减少电流扩展, 提高

器件的微分量子效率. 湿法氧化的条件如下: 炉温

420 ℃, N2 流量 0.95 L/min, 水温 95 ℃. 待整个

有源区生长完成后, 在其上方生长 15对 P型 Al0.12
Ga0.88As/Al0.9Ga0.1As分布布拉格反射镜 (P type

distributed Bragg reflectors, P-DBRs), 最后外延

生长欧姆接触层.

器件的制作过程如下. 首先, 在出光孔外围制

作环形 Ti/Pt/Au欧姆接触 P电极. 然后, 采用感

应耦合等离子体 (inductive coupled plasma, ICP)

刻蚀至 N-DBR, 将 VCSEL台面所有的高铝层暴

露出来. 接着, 采用湿法氧化法将高铝层外围氧化,

形成氧化孔. 接下来, 在 P电极上方电镀 3 µm厚

金, 改善横向散热, 有利于提高器件的温度特性.

然后 , 将衬底减薄至 150 µm, 并在其表面蒸发

AuGeNi/Au 形成 N型电极. 最后, 对器件进行快

速热退火, 形成良好的欧姆接触. 为了更好地分析

5结级联 VCSEL的光电性能, 不仅制备了不同孔

径的器件, 同时还采用相同的工艺制备了 905 nm

单结 VCSEL器件作为对比. 该单结 VCSEL器件

除了需要较多的 P-DBR对数 (18对)来保证正常

激射, 其外延层组分、器件结构和制备工艺均和

5结级联 VCSEL器件相同. 

3   实验结果及讨论

在室温连续 (continuous wave, CW)条件下,

8 µm氧化孔径的 5结级联 VCSEL单管的光功率-

电流 (light-current, L-I )特性、电压-电流 (voltage-

current, V-I )特性、功率转换效率 (PCE)、以及光

谱如图 2(a)—(d)所示. 相同孔径的单结 VCSEL

的测试特性曲线也呈现在图中作为对比. 从 L-I 特

性曲线可以发现, 5结 VCSEL和单结 VCSEL的

阈值电流分别为 0.6 mA和 0.8 mA, 相应的 P型

DBR的对数分别为 15对和 19对. 虽然 5结VCSEL
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图 2    氧化孔径 8 µm的 5结 VCSEL与单结 VCSEL在室温 CW条件下的测试结果　(a) L-I 曲线; (b) V-I 曲线; (c) PCE-L 曲线;

(d) 5结 VCSEL在 1 mA下的光谱

Fig. 2. Measured results of 5-junction VCSEL and single junction VCSEL with 8 µm oxide aperture under CW condition at room
temperature: (a) L-I curves; (b) V-I curves; (c) PCE-L curves; (d) spectrum of 5-junction VCSEL measured at 1 mA. 

物 理 学 报   Acta  Phys.  Sin.   Vol. 71, No. 20 (2022)    204203

204203-3

http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1


的 P-DBR对数少, 但是由于 5个有源区级联可以

大大提高光增益, 从而减小了器件阈值. 单结VCSEL

和 5结级联 VCSEL的饱和功率分别为 18.3 mW

和 33.5 mW. 在线性区域内 , 相同电流下 5结

VCSEL的输出功率是单结的 5倍以上. 例如当注

入电流 I = 4 mA时, 单结 VCSEL输出功率只有

3.4 mW, 而 5结级联VCSEL输出功率为 18.1 mW,

是单结功率的 5.3倍. 另外, 单结 VCSEL的最大

斜率效率只有 1.1 W/A, 而 5结级联 VCSEL的最

大斜率效率为 5.4 W/A, 是单结斜率效率的近

5倍. 除此之外, 当输出功率均为 10 mW时, 单结

VCSEL需要的驱动电流为 10 mA, 而 5结级联

VCSEL需要的驱动电流仅为 2.4 mA, 这有益于减

小驱动电路的功耗和成本.

图2(b)对比了单结VCSEL和5结级联VCSEL

的 V-I 特性. 由于 5结级联 VCSEL比单结 VCSEL

多了 4个有源区和 4个隧道结以及额外的一些匹

配层, 其开启电压要大于单结 VCSEL的开启电

压. 从图 2(b)可以发现, 单结 VCSEL的开启电压

只有 1.54 V, 而 5结级联 VCSEL的开启电压高达

6.89 V, 但比其光子能带电压 6.85 V仅大了 40 mV,

没有引入太多的额外电压, 证明隧道结的设计、掺

杂浓度和生长质量较好. 另外, 从图 2(b)可以看

出, 5结 VCSEL的串联电阻约为 157 W, 大于单

结 VCSEL的串联电阻 90 W. 这也是因为在 5结

VCSEL内, 多个有源区、隧道结和匹配层的存在,

使串联电阻增大. 图 2(c)展示了两种器件的 PCE,

单结的最大 PCE只有 44.1%, 且随着功率的增大

而迅速降低; 5结 VCSEL的最大 PCE为 55.2%,

且在 9—30 mW区间均保持在 50%以上, 这意味

着 5结 VCSEL可以在较大的功率下仍然保持较

高的 PCE, 这对于实际应用是至关重要的. 图 2(d)

所示的是 5结 VCSEL在 1 mA时的光谱, 其激射

波长在 905 nm附近, 符合预期设计. 由于在 8 µm
氧化孔径下, VCSEL为多横模激射, 因此在光谱

图中显示为多个峰值. 综合上述测试结果, 5结级

联 VCSEL相对于单结 VCSEL器件, 在功率、斜

率效率及 PCE等方面具有较大的扩展能力, 在许

多大功率应用方面具有更大的优势.

图 3是在室温下测得的单结 VCSEL和 5结

级联 VCSEL在不同耗散功率下的基模峰值波长

的变化情况. 耗散功率 (Pdiss)定义为输入功率减

去输出的光功率 (Pout), Pdiss = I×V–Pout. 其中,

I 为工作电流, V 为工作电压. 从图 3可以发现, 随

着耗散功率的增加 , 两种器件基模光谱均发生

红移, 且 5结 VCSEL红移速率要比单结 VCSEL

红移速率大. 通过对测量数据进行线性拟合, 可以

得到 5结 VCSEL和单结 VCSEL随耗散功率的

红移速率 (Dl/DPdiss)分别为 0.1739 nm/mW和

0.1390 nm/mW. 由于 5结 VCSEL和单结 VCSEL

量子阱材料、DBR材料均相同, 其基横模光谱随温

度的红移速率Dl/DT 相同, 均为 0.0638 nm/℃[21].

对于 VCSEL器件, 其热阻 Rth 的计算公式为 Rth =

DT/DPdiss = (Dl/DPdiss)/(Dl/DT). 通过计算

得到 , 5结 VCSEL的热阻为 2.73 ℃/mW, 单结

VCSEL的热阻为 2.18 ℃/mW. 5结 VCSEL的热

阻大于单结 VCSEL的热阻, 这是因为多个氧化层

的引入, 热量更难向衬底和侧向传导. 因此, 对于

多结 VCSEL器件, 一般采用窄脉冲驱动方式来降

低其内部产热从而获得较大的峰值输出功率.
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图  3    单结 VCSEL和 5结 VCSEL器件的基模光谱随耗

散功率的变化关系

Fig. 3. Variation  of  fundamental  mode  spectra  of  single

junction VCSEL and 5-junction VCSEL devices with dissi-

pated power.

 
接下来, 在 CW条件下测试了 8 µm孔径 5结

级联VCSEL在不同环境温度下的特性曲线, 如图 4

所示. 显然, 器件输出功率随着环境温度的升高而

降低. 当温度为 25 ℃ 时, 器件的最大输出功率为

33.5 mW, 器件阈值为 0.6 mA. 当温度增加到 85 ℃

时, 最大输出功率降低到 17.5 mW, 阈值增大到

1.0 mA. 当温度进一步增加到 125 ℃ 时, 器件依

然能正常工作, 最大功率超过 6.0 mW, 如图 4(a)

所示. 随着温度的增加, 器件开启电压略微减小,

如图 4(b)所示, 这是由于温度升高, 本征载流子浓

度升高, 同时费米能级带隙减小导致的. 随着温度

的增加, 虽然器件的电压略微减小, 但由于器件的

功率降低, 且阈值增大, 导致器件的 PCE随着温
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度的升高而下降, 如图 4(c)所示. 将不同温度下器

件的最大 PCE和最大 SE提取出来, 如图 4(d)所

示. 随着温度的升高, 器件的最大 PCE和最大 SE

都在下降. 当温度上升到 85 ℃ 时, 器件的最大 PCE

依然保持在 42.7%, 最大斜率效率仍大于 4.3 W/A,

展示出较好的温度特性.
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图  4    氧化孔径 8 µm的 5结 VCSEL在不同温度下的测试结果　(a) L-I 曲线 ; (b) V-I 曲线 ; (c) PCE-I 曲线 ; (d) 最大 PCE和

SE随温度的变化

Fig. 4. Measured  results  of  5-junction  VCSEL  with  8 µm oxide  aperture  under  CW condition  at  different  temperatures:  (a) L-I

curves; (b) V-I curves; (c) PCE-I curves; (d) max PCE and SE versus temperature. 
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图 5    不同氧化孔径 5结 VCSEL器件在室温下　(a) L-I 曲线; (b) V-I 曲线; (c) PCE-I 曲线; (d) 最大 PCE和 SE随孔径的变化

Fig. 5. Measured  results  of  5-junction  VCSELs  with  different  oxide  apertures  under  CW condition  at  room temperature:  (a) L-I

curves; (b) V-I curves; (c) PCE-I curves; (d) max PCE and SE versus oxide aperture. 
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此外, 在 CW条件下测试了不同孔径的 5结

级联 VCSEL单管的光电特性 , 如图 5所示 . 从

图 5(a)所示的 L-I 曲线可以发现, 随着氧化孔径

从 8 µm增大到 20 µm, 器件的阈值从 0.6 mA增

大到 2 mA; 器件的最大功率从 33.5 mW增大到

70.2 mW. 从图 5(a)中还可以看出, 孔径越大, 器

件的热翻转电流越大, 这是因为大孔径器件的有源

区面积更大, 电流密度更低. 随着孔径增大, 器件

的最大 PCE没有发生明显变化, 如图 5(c)所示.

我们将不同孔径器件的最大 PCE和最大 SE提取

到图 5(d)中, 可以发现, 所有器件的最大斜率效率

均大于 5.4 W/A, 最大 PCE均大于 54%, 展示出

很好的性能均一性.

最后, 制备了 19单元 5结 VCSEL阵列, 单元

氧化孔径为 20 µm, 制备得到的实际阵列及其尺寸

如图 6(a)所示. 整个阵列有源区的直径为 0.214 mm,

阵列的总发光面积为 0.036 mm2. 测试了该 19单

元 VCSEL阵列在窄脉冲条件下 (脉冲宽度 5.4 ns,

占空比 0.019%)不同驱动电路板电压下的峰值输

出功率. 图 6(b)是驱动电路板电压为 25 V下测得

的阵列光功率响应曲线, 可以看出, 脉冲宽度 (半

高全宽)为 5.4 ns. 图 6(c)展示了 19单元阵列的

峰值输出功率随驱动板电压的变化, 可以发现, 峰

值功率随着驱动板电压先线性增大后趋近饱和, 测

得的最大峰值功率达到 58.3 W, 对应的最大峰值

功率密度为 1.62 kW/mm2. 这种高峰值功率、高功

率密度的多结级联 VCSEL阵列在中远距离激光

雷达的应用中具有诱人的应用前景. 

4   结　论

设计并制备了 5结级联 905 nm VCSEL及其

阵列, CW条件下不同孔径的器件最大斜率效率均

大于 5.4 W/A, 最大 PCE均大于 54%. 窄脉冲条件

下测试得到的 19单元 5结 VCSEL阵列的最大峰

值功率达到 58.3 W, 峰值功率密度为 1.62 kW/mm2.

相对于单结 VCSEL, 5结级联 VCSEL在输出功

率、斜率效率及功率转换效率等性能上具有较大

的优势. 下一步我们会继续增加 VCSEL的结数,

以获得更高的功率密度. 另外, 也需要解决多结

VCSEL的散热问题, 提高器件的可靠性.
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Abstract

Aiming  at  three-dimensional  (3D)  sensing  applications  such  as  LiDAR,  high  power  density  five-junction

cascaded vertical cavity surface emitting lasers (VCSELs) with 905 nm wavelength are designed and fabricated.

The maximum power conversion efficiency is 55.2% for an individual VCSEL emitter with 8 µm oxide aperture.
And the maximum slope efficiency of the device is 5.4 W/A, which is approximately 5 times that of traditional

single-junction VCSEL with the same aperture. Under the condition of narrow pulse (pulse width 5.4 ns, duty

cycle 0.019%) injection, the peak output power of 19-element array (20 µm oxidation aperture for each element)
reaches  58.3  W,  and  the  corresponding  power  density  is  as  high  as  1.62  kW/mm2.  The  devices  with  various

apertures (8–20 µm) are characterized. The results show that the maximum slope efficiencies of all these devices
are greater than 5.4 W/A and the maximum PCE is higher than 54%. These high-performance VCSEL devices

can be used as ideal light sources for 3D sensing applications such as LiDAR.

Keywords: 905 nm vertical cavity surface emitting lasers, multi-junction cascade, high power density,
3-dimensional sensing
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