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Table 1.  High-altitude nuclear tests parameters.

MR km MaE/kt 4EE/(°) Bia/ke

Checkmate 147 410 17 440
Starfish 400 1400 17 1500
K3 300 300 47 320

K4 150 300 47.6 320
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Fig. 1. Atmosphere pressure vs. altitude.
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(a) Checkmate; (b) K4; (c) K3; (d) Starfish

Fig. 2. Contour of 1g(nx): (a) Checkmate; (b) K4; (c¢) K3; (d) Starfish.
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Fig. 3. Contour of energy ratio npx of the debris and X-ray: (a) Checkmate; (b) K4; (¢) K3; (d) Starfish.
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line density dp at altitude 115 km.
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High-altitude nuclear explosion energy accumulation
law in atmosphere
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Abstract

An accumulation model of X-ray and debris in a high altitude nuclear explosion is built in this work. Using
the established model, we simulate the energy accumulations of four large scale experiments (i.e. the
Checkmate, Starfish, K3 and K4) conducted by the United States and the Soviet Union. The dynamics of the
kinetic accumulation at 100—200 km altitude is analyzed. Our simulation results show that the kinetic patch
spreads a relatively small spatial region and has a large energy density compared with the X-ray patch. The
accumulation of the debris ions can be finished within around 0.5 s, and two absorption peaks (hence two
kinetic patches) can be observed at an altitude of about 115 km and the burst point. The shape of the kinetic
region projected onto the horizontal plane is roughly elliptical, the eccentricity will be smaller at higher
latitudes, and the area will be larger at higher altitudes. Away from the bursting point, the maximum energy
density of the kinetic patch is near the magnetic field line that crosses the bursting point. Within the magnetic

bubble, the maximum energy density of the kinetic patch occurs near the bursting point.
Keywords: high altitude nuclear explosion, X-ray energy accumulation, debris kinetic accumulation
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