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Fig. 1. Solid-liquid model of GaAs crystal in the MD simu-
lation. The blue atoms represent the crystal atoms and the

grey atoms represent the melting atoms.
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Table 1. Interaction parameters between the atoms in

GaAs28:29],
ZHL Ga—Ga As—As Ga—As
Y 0.007874 0.455 0.0166
S 1.11 1.86 1.1417
d 0.75 0.1612 0.56
B/A 1.08 1.435 1.5228
Dy/eV 1.40 3.96 2.10
Ry/A 2.3235 2.10 2.35
¢ 1.918 0.1186 1.29
h = cosb 0.3013 0.07748 0.237
a/At 1.846 3.161 0
R./A 2.95 3.40 3.10
D/A 0.15 0.20 0.20
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Fig. 2. (a) Diagram of [4-S000] LaSC; (b) LaSC entropy

changes for the systems at seven strains.
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Fig. 3. PDF curves of the melt region at different strains.
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Fig. 4. Variation of crystallization rates with time under
different strains, and the inset shows the enlarged portion

for the time range of 0 to 0.7 ns.
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Fig. 5. Variation of the number of twin defect atoms (a) and dislocation density with time (b).
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Abstract

The high-quality growth of GaAs crystals is extremely essential for the fabrication of high-performance
high-frequency microwave electronic devices and light-emitting devices. In this work, the molecular dynamics
(MD) simulation is used to simulate the induced crystallization of GaAs crystal along the [110] orientation. The
effects of strain on the growth process and defect formation are analyzed by the largest standard cluster
analysis, the pair distribution function, and visualization analysis. The results indicate that the crystallization
process of GaAs crystal changes significantly under different strain conditions. At the initial stage, the crystal
growth rate of the system decreases after a certain tensile strain and a large compressive strain have been
applied, and the greater the strain, the lower the crystallization rate is. In addition, as the crystal grows, the
system forms a zigzag interface bounded by the {111} facet, and the angle between the growth plane and the
{111} facet affects the morphology of the solid-liquid interface and further affects the formation of twins. The
larger the applied tensile strain and the smaller the angle, the more twin defects will form and the more
irregular they will be. At the same time, a large proportion of the dislocations in the system is associated with
twins. The application of strain can either inhibit or promote the nucleation of dislocations, and under an
appropriate amount of strain size, crystals without dislocations can even grow. The study of the microstructural
evolution of GaAs on an atomic scale provides a reference for crystal growth theory.

Keywords: molecular dynamics, GaAs, induced crystallization, strain
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